Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
em xin lỗi chớ em mới lớp 6 thui anh Đức ạ
Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(x+y\) ≥ \(2\sqrt{xy}\)
⇔ \(\left(x+y\right)^2\) ≥ \(4xy\)
⇔ \(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy
⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)
CMTT , \(16xy+\dfrac{1}{xy}\) ≥ \(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)
⇒ \(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)
Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:
\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp
ra \(x=8;y=-8\)