Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x^2-\frac{1}{2}x\right)^2+\frac{3}{4}\left(x+\frac{2}{3}\right)^2+\frac{2}{3}>0\)
Ko biết xét khoảng:v
Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
\(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2.x.\frac{1}{x}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x+\frac{1}{x}=3.\)
\(x^3+\frac{1}{x^3}= \left(x+\frac{1}{x}\right)^3-3x^2.\frac{1}{x}-3.x.\frac{1}{x^2}=3^3-3x-\frac{3}{x}=27-3\left(x+\frac{1}{x}\right)=27-3.3=18\)
\(x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5x^4-10x^3-10x^2-5x=3^5-5x\left(x^3+2x^2+2x+1\right)-5x\left(x+1\right)\left(x^2+x+1\right)\)
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
\(VT-VP=\frac{x^8+y^8+z^8}{x^3y^3z^3}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\equiv\frac{F\left(x;y;z\right)}{x^3y^3z^3}\)
Ta có: \(F\left(x;y;z\right)=G\left(x;y;z\right)+M\left(x;y;z\right)\ge0\)
Với \(G\left(x;y;z\right)=\)
(hiển nhiên không âm)
\(M\left(x;y;z\right)=\)
(cũng hiển nhiên không âm)
Ta có đpcm.
\(x^2+\frac{1}{x^2}=7\Rightarrow\left(x^2+\frac{1}{x^2}\right)^2=49\Leftrightarrow x^4+2.x^2.\frac{1}{x^2}+\frac{1}{x^4}=49\Leftrightarrow x^4+2+\frac{1}{x^4}=49\)
\(\Leftrightarrow x^4+\frac{1}{x^4}=47\Rightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)
\(\Leftrightarrow x^8+2.x^4.\frac{1}{x^4}+\frac{1}{x^8}=2209\Rightarrow x^8+2+\frac{1}{x^8}=2209\Rightarrow x^8+\frac{1}{x^8}=2209-2=2207\)