Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: D
A sai vì BPT <=> 8x-4x>0
=>x>0
B sai vì BPT tương đương với 4x-8x>0
=>x<0
C sai vì nếu x=0 thì BPT này sai
Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại ta có :
\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)
Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)
Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)
Thiết lập tương tự và thu lại ta có :
\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=1\)
\(L=\left(x^2-2x\right)^2+3\left(x-2\right)^2+8\ge8\forall x\)
Dấu = xảy ra \(\Leftrightarrow x=2\)
\(1+xy=2\left(x^2+y^2\right)\ge4\left|xy\right|\ge4xy\)
\(\Rightarrow3xy\le1\Rightarrow xy\le\frac{1}{3}\)
\(1+xy\ge4\left|xy\right|\ge-4xy\Rightarrow5xy\ge-1\Rightarrow xy\ge-\frac{1}{5}\)
\(\Rightarrow-\frac{1}{5}\le xy\le\frac{1}{3}\)
\(P=7\left(x^4+y^4+2x^2y^2\right)-10x^2y^2=7\left(x^2+y^2\right)^2-10x^2y^2\)
\(P=\frac{7}{4}\left(xy+1\right)^2-10x^2y^2=-\frac{33}{4}x^2y^2+\frac{7}{2}xy+\frac{7}{4}\)
Đặt \(t=xy\Rightarrow P=f\left(t\right)=-\frac{33}{4}t^2+\frac{7}{2}t+\frac{7}{4}\) với \(t\in\left[-\frac{1}{5};\frac{1}{3}\right]\)
Xét \(f\left(t\right)\) trên \(\left[-\frac{1}{5};\frac{1}{3}\right]\)
\(f\left(-\frac{1}{5}\right)=\frac{18}{25}\) ; \(f\left(\frac{1}{3}\right)=2\) ; \(f\left(-\frac{b}{2a}\right)=f\left(\frac{7}{33}\right)=\frac{70}{33}\)
\(\Rightarrow M=\frac{70}{33}\) ; \(m=\frac{18}{25}\)
x^2+y^2=1=>xy≤1/2
A=2/(1+xy)-2
1+xy≤1/2+1=3/2
x,y>0=>1/(1+xy)≥2/3
A≥2.2/3-2=-2/3
khi x=y=√2/2
Viết lại đề câu a)
Câu b)
\(A=4x^2+4x+15\)
\(=\left(2x+1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)
Vậy : Min \(A=14\Leftrightarrow x=-\frac{1}{2}\)
\(x^2-3x+7=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)
Ta có \(A=4x^2+4x+15=\left(2x+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(x=\frac{-1}{2}\)
Vậy Min \(A=14\Leftrightarrow x=\frac{-1}{2}\)
Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)
- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)
- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)
\(\Leftrightarrow2x^3=16\)
\(\Leftrightarrow x=2\) ( TM )
Vậy ....
( Chắc đề như vầy :vvv )
\(y=x^4+4x^3+4x^2-x^2-2x+2\)
\(y=\left(x^2+2x\right)^2-\left(x^2+2x\right)+2\)
Đặt \(x^2+2x=t\)
Với \(x\in\left[-2;4\right]\Rightarrow t\in\left[-1;24\right]\)
Xét \(f\left(t\right)=t^2-t+2\) trên \(\left[-1;24\right]\)
Ta có \(-\frac{b}{2a}=\frac{1}{2}\)
\(f\left(-1\right)=4\) ; \(f\left(\frac{1}{2}\right)=\frac{7}{4}\) ; \(f\left(24\right)=554\)
\(\Rightarrow y_{max}=554\) khi \(t=24\Leftrightarrow x=4\)
\(y_{min}=\frac{7}{4}\) khi \(t=\frac{1}{2}\Leftrightarrow x=\frac{-2\pm\sqrt{2}}{2}\)
M=4x2-3x+\(\frac{x}{4}\)+2017=16x2-12x+x+8068=16x2-11x+8068
Phân tích M ra đc:M=[(4x)2-2.4x.\(\frac{11}{8}\)+\(\frac{121}{64}\)]-\(\frac{121}{64}\)+8068
=(4x-\(\frac{11}{8}\))2+\(\frac{516231}{64}\)
Như vậy MinM là \(\frac{516231}{64}\)nhé!