K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

 vì x+4y=1 nên x=1-4y (1) 

ta có : x^2+4y^2≥1/5 
=> x^2+4y^2-1/5 ≥0 (2) 
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0 
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0 
<=>20y^2 - 8y + 4/5 ≥ 0 
<=>5(4y^2 - 8/5y + 4/25) ≥ 0 
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng) 
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5

11 tháng 4 2016

Làm gọn thôi bạn ơi! Dùng bất đẳng thức Bunyakovsky

16 tháng 4 2016

đề này hơi bị hư cấu á bạn !!

16 tháng 4 2016

 vì x+4y=1 nên x=1-4y (1) 
ta có : x^2+4y^2≥1/5 
=> x^2+4y^2-1/5 ≥0 (2) 
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0 
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0 
<=>20y^2 - 8y + 4/5 ≥ 0 
<=>5(4y^2 - 8/5y + 4/25) ≥ 0 
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng) 
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

23 tháng 9 2016

Hình như bạn viết sai đề,câu a câu b có x^2 mới đúng chứ?

 

10 tháng 10 2019

x^3 -3x+a x^2-2x+1 x+2 x^3-2x^2+x 2x^2-4x+a 2x^2-4x+2 - - a-2

Vì \(x^3-3x+a\)chia cho \(x^2-2x+1\)dư 3

\(\Leftrightarrow a-2=3\)

\(\Leftrightarrow a=5\)

10 tháng 10 2019

Câu 2:

\(P=5-x^2+2x-4y^2-4y\)

\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)

Vì \(\hept{\begin{cases}-\left(x-1\right)^2\le0;\forall x\\-\left(2y+1\right)^2\le0;\forall x\end{cases}}\)\(\Rightarrow-\left(x-1\right)^2-\left(2y+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-\left(2y+1\right)^2+7\le0+7;\forall x\)

Hay \(P\le7;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)

Vậy \(P_{max}=7\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)