Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích gt sau đó suy ra x+y+x=0
từ đây tính đc x+y=? y+z=? x+z=?
ta được kết quả là'; -2006
Xét \(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
TH1:\(x+y+z=0\)
\(\Rightarrow x+y=-z;y+z=-x;z+x=-y\left(1\right)\)
Thay (1) vô pt cần tính:
\(\frac{2016xyz}{-z.-x.-y}=\frac{2016xyz}{-\left(xyz\right)}=-2016\)
TH2:\(x^2+y^2+z^2-xy-yz-xz=0\)
Nhân 2 vế với 2
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
Do VT dương
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}}\Rightarrow x=y=z\)
Thay y,z ở pt cần tính là x
\(\Rightarrow\frac{2016x.x.x}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{2016x^3}{2x.2x.2x}=\frac{2016x^3}{8x^3}=\frac{2016}{8}=252\)
Vậy pt có thể = -2016 khi x + y + z = 0
pt có thể = 252 khi \(x^2+y^2+z^2-xy-xz-yz=0\)
Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:
Vì bản chất như sau:
thỏa ĐK ban đầu x^3+y^3+z^3=3xzy
Từ HĐT=>
\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)
=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định
do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)
Nếu thêm đk (*) giải tiếp
(2) vô nghiệm
do vậy khi đó chỉ có nghiệm duy nhất của (1)
x+y=-z
x+z=-y
z+y=-x
Thay vào biểu thwucs P=-2016
\(x^3+y^3+z^3=3xyz\)
⇔ \(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz=0\)
⇔ \(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
⇔ \(\left(x+y+z\right)\left(x^2-2xy+y^2+z^2-2xz+x^2+y^2-2yz+z^2\right)=0\) ⇔ \(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Do : x , y , z là ba số thực phân biệt , ta có :
\(x+y+z=0\)
⇔ \(x+y=-z;y+z=-x;x+z=-y\)
Khi đó , ta có : \(P=\dfrac{2016xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\dfrac{2016xyz}{-xyz}=-2016\)
Đáp án:
P=±36P=±36
Giải thích các bước giải:
Ta có:
x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36
Vậy P=±36P=±36.
\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Đặt \(N=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)
(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là \(x^2+y^2+z^2-xy-yz-zx\) nhé!
mấy bạn zải zúp mình mình đang cần gấp
Dễ dàng CM được \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\) đúng với mọi x,y,z,
Vậy có hai khả năng:
Trường hợp 1: \(x+y+z=0\). Khi đó \(P=\frac{2016xyz}{\left(-x\right)\left(-y\right)\left(-z\right)}=-2016\).
Trường hợp 2: \(x=y=z\). Khi đó \(P=\frac{2016x^3}{\left(2x\right)^3}=252\) (trường hợp này chỉ xảy ra khi x,y,z khác 0)