K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Đăt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k,y=3k,z=4k\)

\(\Rightarrow M=\frac{y+x-z}{x-y+z}=\frac{3k+2k-4k}{2k-3k+4k}=\frac{k}{3k}=\frac{1}{3}\)

Thank you!!!!

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

26 tháng 9 2021

Vì x,y,z tỉ lệ với các số 2,3,4.

⇒x2=y3=z4=k⇒x2=y3=z4=k

⇒⎧⎪⎨⎪⎩x=2ky=3kz=4k⇒{x=2ky=3kz=4k

Thay x = 2k; y = 3k ; z = 4k vào M, ta được:

M=5x+2y+zx+4y−3zM=5x+2y+zx+4y−3z

M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)M=5.(2k)+2.(3k)+4k2k+4.(3k)−3.(4k)

M=10k+6k+4k2k+12k−12kM=10k+6k+4k2k+12k−12k

M=20k2kM=20k2k

M=202M=202

M=10M=10

Vậy M = 10.

26 tháng 9 2021

Vì x,y,z tỉ lệ với các số 2,3,4.

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)

Thay x = 2k; y = 3k ; z = 4k vào M, ta được:

\(M=\frac{5x+2y+z}{x+4y+3z}\)

\(=\frac{5.2k+2.3k+4k}{2k+4.3k+3.4k}=\frac{10k+6k+4k}{2k+12k+12k}\)\(=\frac{20k}{26k}=\frac{5}{9}\)

Vậy \(M=\frac{5}{9}\)

9 tháng 4 2019

Online Math là nhất

Online Math như cặc

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)