K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

A=x^4+y^4-xy\(-\left(x^2y^2+7xy-9\right)\)

A=\(\left(x^2+y^2\right)^2-2x^2y^2-xy\)

A=\(\left(3-xy\right)^2-2x^2y^2-xy\)

A=\(-\left(x^2y^2+7xy-9\right)\)

A=\(-\left(x^2y^2+6xy+9+xy-18\right)\)

A=\(-\left(xy+3\right)^2-xy+18\)

Đến đây đánh giá xy

Có x^2+y^2+xy=3

hay (x+y)^2=3+xy

suy ra xy+3>=0

hay xy>=-3

Như vậy A<=21

Dấu bằng xảy ra khi x=\(\sqrt{3}\),y=\(-\sqrt{3}\)

Chúc bạn học tốt

13 tháng 5 2023

usechatgpt init success là gì vậy bạn :))?

\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)

\(\Rightarrow P=8-\left(x-y\right)^2\le8\)

\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)

\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)

\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)

\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)

\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)

14 tháng 5 2023

:v ẹc, vậy thôi khỏi dùng ik, lên đây đăng bài mình giải giúp cho.

8 tháng 1 2017

ko bít làm à

8 tháng 1 2017

k bik nên mới hỏi

11 tháng 1 2017

Ta có: \(\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)\\ =\left(xy+\left(x+y+z\right)z\right)\left(yz+\left(x+y+z\right)x\right)\left(zx+\left(x+y+z\right)y\right)\\ =\left(xy+zx+zy+z^2\right)\left(yz+x^2+xy+xz\right)\left(zx+xỹ+y^2+yz\right)\\ =\left(y+z\right)\left(x+z\right)\left(x+z\right)\left(y+x\right)\left(z+y\right)\left(x+y\right)\\ =\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2\\ \Rightarrow\frac{\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =\frac{\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =1\)