K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Sửa đề: 

\(\frac{x}{2016}=\frac{y}{2017}=\frac{z}{2018}=\frac{y-x}{1}=\frac{z-y}{1}=\frac{z-x}{2}\)

\(\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)

\(\Rightarrow\left(x-z\right)^3=4\left(x-y\right)^2.2\left(y-z\right)=8\left(x-y\right)^2\left(y-z\right)\)

10 tháng 10 2017

cảm ơn bạn alibaba nguyễn

13 tháng 12 2019

Đặt \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}=k\)

\(\Rightarrow x=2015k;y=2016k;z=2017k\)

Ta có:

\(\left(x-z\right)^3=\left(2015k-2017k\right)^3=-8k^3\left(1\right)\)

Mặt khác:

\(-8\left(x-y\right)^2\left(z-y\right)=-8\left(2015k-2016k\right)^2\left(2017k-2016k\right)\)

\(=-8k^2\cdot k=-8k^3\left(2\right)\)

Từ ( 1 );( 2 ) suy ra đpcm

27 tháng 11 2018

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat

Em có thể tham khảo tại link này nhé!

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

3 tháng 1 2018

Hỏi đáp Toán

3 tháng 1 2018

nhiều tin nhắn thế ? nhonhung

9 tháng 9 2018

1) ADTCDTSBN

có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)

=> ...

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...

4 tháng 1 2018

Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k

Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k(1)

(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => đpcm