Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m-2\right)^2\ge0\forall x\Rightarrow PT\) luôn có 2 nghiệm \(x1;x2\)
\(P=\left(x_1+x_2\right)^2-2x_1x_2-4\left(x_1+x_2\right)\)
Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=m-1\end{matrix}\right.\) thay vào \(P:P=m^2-2\left(m-1\right)+4m=m^2+2m+2\)
\(=\left(m+1\right)^2+1\ge1\) Dấu "=" xảy ra \(\Leftrightarrow m=-1\)
Δ=(2m-2)^2-4(-2m+1)
=4m^2-8m+4+8m-4=4m^2>=0
=>Phương trình luôn có hai nghiệm
\(P=\left(x_1+x_2\right)^2-2x_1x_2-4x_1x_2\)
\(=\left(2m-2\right)^2-6\left(-2m+1\right)\)
\(=4m^2-8m+4+12m-6\)
=4m^2+4m-2
=4m^2+4m+1-3=(2m+1)^2-3>=-3
Dấu = xảy ra khi m=-1/2
a)
\(x^2-2\left(m+1\right)x+4m-m^2=0\)
Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m2 )
\(\Delta'=b'^2-ac\)
= \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)
= m2 + 2m + 1 -4m +m2
= 2m2 -2m + 1
= 2 ( m-1)2 > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)
a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(=m^2+2m+1-4m+m^2\)
\(=2m^2-2m+1\)
\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)
\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)
\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)
b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)
theo bài ra \(A=\left|x_1-x_2\right|\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)
\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)
\(\Leftrightarrow A^2=8m^2-8m+4\)
\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)
\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)
dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)
vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)
\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)
\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)
\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)
\(\Leftrightarrow4m+1=2m+3+x_1\)
\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)
Mà \(x_1x_2=m^2+2m+2\)
\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)
\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
https://hoc24.vn/hoi-dap/question/282612.html
thao khảo bạn
\(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot2m\)
\(=4\left(m^2+2m+1\right)-8m\)
\(=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{1}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m}{1}=2m\end{matrix}\right.\)
\(P=x_1^2+x_2\cdot2\left(m+1\right)+4x_1x_2\)
\(=x_1^2+x_2\cdot\left(x_1+x_2\right)+4\cdot2m\)
\(=x_1^2+x_2^2+x_1x_2+8m\)
\(=\left(x_1+x_2\right)^2-x_1x_2+8m\)
\(=\left(2m+2\right)^2-2m+8m\)
\(=4m^2+8m+4+6m\)
\(=4m^2+14m+4\)
\(=4\left(m^2+\dfrac{7}{2}m+1\right)\)
\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{4}+\dfrac{49}{16}-\dfrac{33}{16}\right)\)
\(=4\left(m+\dfrac{7}{4}\right)^2-\dfrac{33}{4}>=-\dfrac{33}{4}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{7}{4}=0\)
=>\(m=-\dfrac{7}{4}\)
\(\Delta'=\left(m+1\right)^2-2m=m^2+1>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(P=x_1^2+2\left(m+1\right)x_2+4x_1x_2\)
\(=x_1\left(x_1+x_2\right)-x_1x_2+2\left(m+1\right)x_2+4x_1x_2\)
\(=2\left(m+1\right)x_1+2\left(m+1\right)x_2+3x_1x_2\)
\(=2\left(m+1\right)\left(x_1+x_2\right)+3x_1x_2\)
\(=4\left(m+1\right)^2+6m\)
\(=4m^2+14m+4\)
\(=4\left(m+\dfrac{7}{4}\right)^2-\dfrac{33}{4}\ge-\dfrac{33}{4}\)
\(P_{min}=-\dfrac{33}{4}\) khi \(m=-\dfrac{7}{4}\)