Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}\ge\frac{2.4}{2xy+x^2+y^2}=\frac{8}{\left(x+y\right)^2}=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}=\frac{x^2}{y-1}+4.\left(y-1\right)+\frac{y^2}{x-1}+4.\left(x-1\right)-4x-4y+8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge2.\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}+2.\sqrt{\frac{y^2}{x-1}.4.\left(x-1\right)}-4x-4y+8\)
\(=2.\sqrt{4x^2}+2.\sqrt{4.y^2}-4x-4y+8\)
\(=4x+4y-4x-4y+8\)
\(=8\)
đpcm