Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy=a^2-2b\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=a\left(x^2+2xy+y^2-xy\right)\)
\(=a\left[\left(x+y\right)^2-xy\right]=a\left(a^2-b\right)=a^3-ab\)
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))
a)\(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\Rightarrow x^2+y^2=a^2-2xy\Rightarrow x^2+y^2=a^2-2b\)
\(a,x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(b,x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-2xy-xy\right]\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=a.\left(a^2-3b\right)\)
\(=a^3-3ab\)
a) A=xy(x+y) - (x+y) = (x+y) (xy-1) = (-5+2) (-5.2 -1) =-3 . -11 = 33
b) B= xy (y-x)+2(x-y) =xy (y-x) - 2(y-x) =(y-x) (xy -2)= (-1/3 - -1/2) ( -1/2 . -1/3 -- 2)= 1/6 . -11/6 =-11/ 36
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
Vt = (x - y)^2 + 4xy = x^2 -2xy + y^2 + 4xy = x^2 +2xy+ y^2 = ( x+y)^2 = VP
=> ĐPCM
b, (x + y)^2 = ( x - y)^2 + 4xy = 5^2 + 4.3 = 25 + 12 = 37
Ta có: \(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-x^2y^2\left(x+y\right)\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-5a^3b+5ab^2\)
\(=a^5-5ab\left(a^2-b\right)\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)
\(=\left(\left(x+y\right)^2-2xy\right)\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-x^2y^2\left(x+y\right)\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-5ab\left(a^2-b\right)\)