K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

.B=(4x-9)/(3x+y)-(4y+9)/(3y+x) 

= [4x-(x-y)]/(3x+y) - [4y+(x-y)]/(3y+x) 

= (4x-x+y)/(3x+y) - (4y+x-y)/(3y+x) 

= (3x+y)/(3x+y) - (3y+x)/(3y+x) 

= 1 - 1 = 0

mình nhanh nhất vậy bạn thưởng gì vậy ? 

3 tháng 2 2016

copy chứ nhanh cái gì

3 tháng 9 2016

Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0

=> (x + 1)2 + (y - 2)2 + 9  \(\ge\)9

Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0  => x = -1 và y = 2

Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2) + 9 là 9 khi x = -1 và y = 2

3 tháng 9 2016

\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)

Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .

Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

12 tháng 6 2017

\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)

\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)

\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)

\(\Rightarrow2A\ge-18\)

\(\Rightarrow A\ge-9\)

DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)

26 tháng 6 2017

Cảm ơn bạn nhiều

2 tháng 2 2017

a) 

\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)

b) 

cách 1: ghép tạo số hạng (x-2015)

E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015

hoặc

x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản

-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014

(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014