Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0
=>a^2+b^2+c^2-ab-ac-bc=0
nhân cả 2 vế với 2 ta đc
2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0
=2x^2+2y^2+2z^2-2xy-2xz-2yz
=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0
<=> (y-x)^2+(y-z)^2+(x-z)^2=0
mà ta lại có (y-x)^2>=0 ; (y-z)^2>=0 ; (x-z)^2>=0
và (y-x)^2+(y-x)^2+(x-z)^2=0
<=>(y-x)^2=0<=>y=x
<=>(y-z)^2=0 <=>y=z
<=>(x-z)^2=0<=>x=z
=>x=y=z
Ta có :
\(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\)
\(\Leftrightarrow\frac{-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{x+y+z}\le0\)
\(\Leftrightarrow-\left(x^2+y^2+z^2-xy-xz-yz\right)\le0\)
\(\Leftrightarrow-\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\le0\)
\(\Leftrightarrow-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2\le0\) (luôn đúng)
Vậy \(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\forall x+y+z\ne0\)
Bạn giải thích giùm mình cái dấu tương đương thứ nhất với phần sau thì mình làm được chỗ đó mình lại không hiểu cho lắm
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
lllllllllllllllllllllllllllllllllllllllllllllllllllllll
mn giúp mình với