Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
ê hiếu t có 1 cách nhưng mà bị ngược dấu :)) có cần t làm ko :))))
Lời giải:
Biểu thức $P$ chỉ có min chứ không có max bạn nhé.
Nếu tìm min thì ta làm như sau:
Áp dụng BĐT Cô-si cho các số không âm ta có:
$x^2+(\frac{3}{14})^2\geq 2\sqrt{x^2.(\frac{3}{14})^2}=\frac{3}{7}|x|\geq \frac{3}{7}x$
$y^2+(\frac{1}{14})^2\geq \frac{1}{7}|y|\geq \frac{1}{7}y$
$z^2+(\frac{1}{7})^2\geq \frac{2}{7}|z|\geq \frac{2}{7}z$
Cộng theo vế và thu gọn ta thu được:
$P+\frac{1}{14}\geq \frac{1}{7}(3x+y+2z)=\frac{1}{7}$
$\Rightarrow P\geq \frac{1}{14}$
Vậy $P_{\min}=\frac{1}{14}$
Dấu "=" xảy ra khi $(x,y,z)=(\frac{3}{14}, \frac{1}{14}, \frac{1}{7})$
Tại sao lại ra những con số như trên, bạn tham khảo thêm phương pháp chọn điểm rơi trong BĐT AM-GM.