K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề bài phải là x,y,z,t nguyên dương. 
Vì nếu cho x=z=1;y=t=0 thì thỏa mãn: x²+y²=z²+t² 
nhưng x+y+z+t = 2 là số nguyên tố. 

với x,y,z,t là số nguyên dương => x+y+z+t >=4 
giả sử x+y+z+t là số nguyên tố 
ta có x+y+z+t >= 4 => x+y+z+t lẽ 
=> trong x,y,z,t có một số lẽ số lẽ ( 1 hoặc 3 số lẽ ) 
* trường hợp 1: có 1 số lẽ, giả sử là x => x²+y² lẽ , còn z²+t² chẳn, vô lý vì chúng bằng nhau 
* trường hợp 2: có 3 số lẽ, 1 số chẳn, giả sử x chẳn. => x²+y² lẽ , còn z²+t² chẳn, vô lý. 
mọi trường hợp đều dẫn kết điều mâu thuẩn , vậy giả thiết phản chứng là sai và bài toán được chứng minh.

12 tháng 1 2020

Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
          = (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
          = x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
 (Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2 
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ

28 tháng 3 2022

refer

https://olm.vn/hoi-dap/detail/1303479279140.html

25 tháng 2 2021
Toán thế lày thì e chịu
25 tháng 2 2021

Ta có x+y=z+t 

=>y=z+t-x

=>x(z+t-x)=zt-1

=>xz+xt-x2=zt-1

=>x(z-x)=zt-xt-1

=>x(z-x)=t(z-x)-1

=>t(z-x)-x(z-x)=1

=>(t-x)(z-x)=1

TH1:

t-x=z-x=1(x;y;z;t E N sao)

=>z=t(vì =x+1)(đpcm)

TH2:

t-x=z-x=-1(vì x;y;z;t E N sao)

=>z=t(vì =x-1)(đpcm)

Vậy z=t

cho xin cảm ơn