K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 1 2021

áp dụng bất đẳng thức cauchy cho 2015 số , ta có

\(2x^{2015}+2013=x^{2015}+x^{2015}+1+1+..+1\ge2015\sqrt[2015]{x^{2015}.x^{2015}}=2015x^2\)

tương tự ta có

\(\hept{\begin{cases}2.y^{2015}+2013\ge2015y^2\\2.z^{2015}+2013\ge2015z^2\end{cases}}\)

cộng ba bất đẳng thức lại ta có \(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

hay \(2015\left(x^2+y^2+z^2\right)\le2.3+2013.3=2015.3\Rightarrow\left(x^2+y^2+z^2\right)\le3\)

dấu "=" xảy ra khi x=y=z=1

3 tháng 4 2019

Có x2015 + y2015 + z2015 = 3

Điều này xảy ra khi và chỉ khi x = y = z = 1

=> max của x2 + y2 + z2  = 3

Vậy...

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

24 tháng 8 2017

3

k nha

31 tháng 8 2017

bang x

28 tháng 11 2019

Biến đổi tương đương giả thiết: \(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\) (xét hiệu 2 vế, cái đẳng thức này quen thuộc nên bạn tự biến đổi)

Do x, y, z dương nên x + y + z > 0. Do đó để đẳng thức trong giả thiết xảy ra thì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\). Thay y, z bởi x vào M ta được M = 3.

Mình nêu hướng làm thôi!

8 tháng 2 2021

Ta có : \(x^2+2y+1=0;y^2+2z+1=0;z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1=y^2+2z+1=z^2+2x+1\)

\(\Rightarrow x^2+2y+1-y^2-2z-1-z^2-2x-1=0\)

\(\Rightarrow\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x-1\right)^2-\left(y-1\right)^2-\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-1=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)

Thay \(x=1;y=1;z=-1\)vào A ta có :

\(A=1^{2015}+1^{2016}+\left(-1\right)^{2017}=1+1-1=1\)

Vậy A = 1

 

Từ \(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{cases}\left(2\right)}\)

Từ \(\left(1\right)\)và \(\left(2\right)\):

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\)

\(\Rightarrow x=y=z=-1\)

\(\Rightarrow A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1+1-1=-1\)

Vậy \(A=-1\)