K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

Ta có:

\(\left\{\begin{matrix} x+2y+3z=4\\ \frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ \frac{6yz+2xy+3xz}{6xyz}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ 2xy+6yz+3xz=0\end{matrix}\right.\)

Do đó:

\((x+2y+3z)^2-2(2xy+6yz+3xz)=4^2-2.0=16\)

\(\Leftrightarrow x^2+4y^2+9z^2=16\)

\(\Leftrightarrow P=16\)

15 tháng 4 2017

b) \(x^2+2\sqrt{3}x-6=0\)

\(\Leftrightarrow\) \(x^2+2\sqrt{3}x+3-9=0\)

\(\Leftrightarrow\) \(\left(x+\sqrt{3}\right)^2-9=0\)

\(\Leftrightarrow\) \(\left(x+\sqrt{3}-3\right).\left(x+\sqrt{3}+3\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{array}{} x+\sqrt{3}-3=0 \\ x+\sqrt{3}+3=0 \end{array} \right.\)\(\Leftrightarrow\) \(\left[\begin{array}{} x= 3-\sqrt{3} \\ x= -3-\sqrt{3} \end{array} \right.\)

Vậy phương trình có tập nghiệm là S={\(3-\sqrt{3};-3-\sqrt{3}\)}

NV
6 tháng 1 2019

Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)

Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)

\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)

\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)

\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)

\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)

11 tháng 8 2016

Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) 

Đpcm

 

11 tháng 8 2016

Trần Việt Linh vào giúp bạn này đi

27 tháng 12 2017

ta có: 9x^2+4y^2=20xy=> 9x^2-2.2.3xy+4y^2=8xy

=> (3x-2y)^2=8xy

mặt khác 9x^2+4y^2=20xy=> 9x^2+2.2.3xy+4y^2=32xy

=>(3x+2y)^2=32xy

=>(3x-2y)^2/(3x+2y)^2=8xy/32xy=1/4

=>(3x-2y)/(3x+2y)=căn 1/4=1/2 hoặc -1/2

mà x<2y=>x=-1/2

27 tháng 12 2017

Ta có:

\(9x^2+4y^2=20xy\)

\(\Leftrightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x^2-18xy-2xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\9x=2y\end{matrix}\right.\)

\(x< 2y\) nên \(9x=2y\Leftrightarrow x=\dfrac{2}{9}y\) (1)

Thay (1) vào A ta được:

\(A=\dfrac{3.\dfrac{2}{9}y-2y}{3.\dfrac{2}{9}y+2y}=\dfrac{y\left(\dfrac{2}{3}-2\right)}{y\left(\dfrac{2}{3}+2\right)}=\dfrac{-\dfrac{4}{3}}{\dfrac{8}{3}}=-\dfrac{1}{2}\)

Vậy..................................