K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

\(P=\frac{x^4}{x^2y^2+x^2yz+z^2x^2}+\frac{y^4}{y^2z^2+xzy^2+x^2y^2}+\frac{z^4}{z^2x^2+xyz^2+y^2z^2}\)

ÁP DỤNG BĐT CAUCHY -  SCHWARZ TA ĐƯỢC:

=>   \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\)           (1)

TA SẼ CHỨNG MINH:    \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\ge1\)         (2)

<=>   \(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)\)

<=>   \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)        (*)

TA ÁP DỤNG LIÊN TỤC 2 LẦN DẠNG BĐT SAU:     \(\alpha^2+\beta^2+\gamma^2\ge\alpha\beta+\beta\gamma+\alpha\gamma\)

KHI ĐÓ TA SẼ ĐƯỢC:    \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

VẬY BĐT (*) LÀ LUÔN ĐÚNG.

=> TỪ (1) VÀ (2)    =>    \(P\ge1\)

DẤU "=" XẢY RA <=>    \(x=y=z\)

VẬY P MIN = 1 <=>    x = y = z .

27 tháng 7 2019

\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)

Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)

Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.

30 tháng 6 2020

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1

\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)

\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)

Vậy GTNN của P=3

12 tháng 11 2018

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

1 tháng 3 2017

=0,5

Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3

Thay số và tính được gtnn là A=0.5

1 tháng 3 2017

đây nhé Xem câu hỏi

22 tháng 3 2016

GTNN là 1 bạn ak

22 tháng 3 2016

1 nha tui ko chắc chắn đâu

tui mới lớp 5 mà