Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
Với \(b=\frac{3-\sqrt{5}}{2}\) => \(\sqrt{b}=\sqrt{\frac{6-2\sqrt{5}}{4}}=\frac{\sqrt{5}-1}{2}\)=> \(\sqrt{b}=1-b\)(*)
Áp dụng bất đẳng thức cosi ta có :
\(x^2+by^2\ge2xy\sqrt{b}\)
\(x^2+bz^2\ge2xz\sqrt{b}\)
\(\left(1-b\right)y^2+\left(1-b\right)z^2\ge2\left(1-b\right)yz\)
Cộng 3 vế của BĐT và kết hợp với (*) ta có
\(2x^2+y^2+z^2\ge2\sqrt{b}\left(xy+yz+xz\right)=2\sqrt{b}\)=> \(MinA=2\sqrt{b}\)với \(b=\frac{3-\sqrt{5}}{2}\)
Dấu bằng xảy ra khi \(y=z=\frac{x}{\sqrt{b}}\)và xy+yz+xz=1
=> \(x=\sqrt{\frac{b\sqrt{b}}{2b+\sqrt{b}}};y=z=\sqrt{\frac{\sqrt{b}}{2b+\sqrt{b}}}\)với \(b=\frac{3-\sqrt{5}}{2}\)
xét các số thực dương x,y,z thoả mãn x+y+z=1.Tìm giá trị nhỏ nhất của P=7/x2+y2+z2 +121/14(xy+yz+zx)
C1 : Ta sẽ chứng minh bất đẳng thức sau : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Suy ra được : \(x^2+y^2+z^2\ge xy+yz+zx=1< =>\left(x^2+y^2+z^2\right)^2\ge1\)
\(< =>x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\ge1\)(*)
Bất đẳng thức chứng minh có thể viết theo dạng : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
\(< =>2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)< =>2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2\)(**)
Cộng theo vế bất đẳng thức (*) và (**) ta được : \(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2+2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2+1\)
\(< =>3\left(x^4+y^4+z^4\right)+2\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge1\)
\(< =>3\left(x^4+y^4+z^4\right)\ge1< =>x^4+y^4+z^4\ge\frac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)
C2 : Ta có : \(x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Sử dụng bất đẳng thức \(a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*
Khi đó : \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(=\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\)(*)
Ta sẽ chứng minh bất đẳng thức phụ sau : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Áp dụng bất đẳng thức trên ta được :
\(\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\ge\frac{2}{3}\left(xy+yz+zx\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)( Do \(xy+yz+zx=1\)) (**)
Từ (*) và (**) suy ra \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
Hay \(x^4+y^4+z^4\ge\frac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta đã từng chứng minh \(x^2+y^2+z^2\ge xy+yz+xz\)
CM như sau: Nhân hai vế cho 2 được \(2x^2+2y^2+2z^2\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Áp dụng ta có: \(x^2+y^2+z^2\ge xy+yz+xz=12\)
\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge12^2=144\)
\(\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\) (1)
Mặt khác: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
\(\Rightarrow\)\(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\) (2)
Cộng vế theo vế ta được: \(2\left(x^4+y^4+z^4\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)+x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge144\)
\(\Leftrightarrow3\left(x^4+y^4+z^4\right)\ge144\)
\(\Leftrightarrow x^4+y^4+z^4\ge48\)
Dấu "=" xảy ra <=> x=y=z=2
Vậy Mmin = 48 <=> x=y=z=2
Ta có :
\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :
\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(GTNN_M=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
( Ko bít đúng Ko ) :)
cảm ơn nha