K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DL
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AV
1
29 tháng 7 2019
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
AH
Akai Haruma
Giáo viên
16 tháng 9 2023
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
LL
0