Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y
\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)
Từ ( 2 ) suy ra y = x + 2004 - m
Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)
\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )
Hệ PT có nghiệm khi PT ( 3 ) có nghiệm
\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)
\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)
\(\Leftrightarrow1974\le m\le2034\)
từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)
GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)
Từ giả thiết ta suy ra \(16x^2+9y^2=72^2.\) Theo bất đẳng thức Bunhia: \(36\times25=\left(\frac{x^2}{9}+\frac{y^2}{16}\right)\left(9+16\right)=\left(\frac{x^2}{9}+\frac{\left(-y\right)^2}{16}\right)\left(9+16\right)\ge\left(x-y\right)^2\to-30\le x-y\le30.\)
Do đó \(1985\le P\le2045\).
Khi \(x=\frac{54}{5},y=-\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=2045.\)
Khi \(x=-\frac{54}{5},y=\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=1985.\)
Vậy giá trị lớn nhất của \(P\) là \(2045\) và giá trị bé nhất là \(1985.\)
Ta có (x+y)2 \(\le\) 2(x2+y2)= 2 \(\Rightarrow\)\(-\sqrt{2}\le x+y\le\sqrt{2}\).
Đặt a = x+y; b = x.y, ta được a2 - 2b = 1, ta cần tìm Max, Min của S = xy - 2(x+y) + 4 = b - 2a + 4.
a2 - 2b = 1 \(\Rightarrow\)2b = a2 - 1.
2.S = 2b - 4a + 8 = a2 - 1 - 4a + 8 = a2 - 4a + 7 = (a-2)2 + 3.
Do \(-\sqrt 2\le a\le \sqrt2\) nên \(-\sqrt2-2\le a-2 \le \sqrt 2-2 (<0).\)
Khi bình phương lên thì dấu sẽ thay đổi do các vế đều nhỏ hơn 0.
\((-\sqrt2-2)^2\ge (a-2)^2 \ge (\sqrt 2-2)^2 \Rightarrow (-\sqrt2-2)^2+3\ge (a-2)^2 +3\ge (\sqrt 2-2)^2+3 \Rightarrow (-\sqrt2-2)^2+3\ge 2S\ge (\sqrt 2-2)^2+3\)
Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.
*Tìm min
Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )
Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)
Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)
\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.
Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)
\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.
*Tìm Max:
Chưa nghĩ ra.
F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy
=(x+y)3-xy(3x+3y-2)
=20073-xy[3.2007-2]
làm tiếp đi
chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)
Đầu tiên tìm GTLN, GTNN của xy.
Không mất tính tổng quát giả sử:
\(x\ge y+1\)
\(\Leftrightarrow x-y-1\ge0\)
\(\Leftrightarrow x-y-1+xy\ge xy\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)
Từ đây ta suy được:
\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)
Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)
Ta lại có:
\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)
Thế vô là xong