\(\hept{\begin{cases}\frac{2010}{x}+1=\frac{2010}{y}\\x+2y=2345\end{cases}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Có nhiều cách nha ! mk lm theo cách thô sơ nhé ! :D 

Ta có    \(\frac{2010}{x}-\frac{2010}{y}=-1\)

    \(\left(\frac{1}{x}-\frac{1}{y}\right)=-\frac{1}{2010}\Rightarrow\left(\frac{1}{x}\right)=\frac{1}{y}-\frac{1}{2010}\)

                                                  =>   x=\(\frac{2010y}{2010-y}\)

thay vào pt 2 ta có 

\(\frac{2010y}{2010-y}+2y=2345\)

Đưa về pt bậc 2 rồi giải pt 

ta có nghiện y=670 và y=3517.5

=>   x=1005          và x=-4690

=. P=x/y=2/3 hoặc -3/4

\(\left(x^4-2x^2+1\right)+\left(y^4-2y^2+1\right)+\left(z^4-2z^2+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-1\right)^2+\left(y^2-1\right)^2+\left(z^2-1\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)=0\\\left(y-1\right)\left(y+1\right)=0\\\left(z-1\right)\left(z+1\right)=0\end{cases}}\)\(\Rightarrow\)\(x,y,z\in\left\{1;-1\right\}\)

Mà \(\hept{\begin{cases}x^{2022}\ge0\forall x\\y^{2020}\ge0\forall y\\z^{2018}\ge0\forall z\end{cases}}\) nên P nhận giá trị không đổi khi \(x,y,z\in\left\{1;-1\right\}\)

\(\Rightarrow\)\(P=1+1+1=3\)

10 tháng 8 2019

ta có  \(7x^2-13xy-2y^2=0\)

  \(7x^2-14xy+xy-2y^2=0\)

7x(x-2y)+y(x-2y)=0

(7x+y)(x-2y)=0

=>. 7x+y=0   hoặc   x-2y=0

=>   y=-7x     hoặc x=2y

Thay lần lượt vào A là OK nha bn !

11 tháng 8 2019

Thay \(y=\frac{5}{3}x;\)\(z=2x\) vào \(\frac{t}{x}-\frac{t}{y}+\frac{t}{z}=\frac{9}{10}\), ta có:

\(t\left(\frac{1}{x}-\frac{3}{5x}+\frac{1}{2x}\right)=\frac{9}{10}\)\(\frac{9t}{10x}=\frac{9}{10}\Rightarrow t=x\)

Lần lượt thay \(y=\frac{5}{3}x;z=2x;t=x\)vào P, ta có:

\(P=\frac{x^2}{\frac{5}{3}.x^2}+\frac{x^2}{\frac{10}{3}.x^2}+\frac{x^2}{2x^2}=\frac{3}{5}+\frac{3}{10}+\frac{1}{2}=\frac{7}{5}\)

10 tháng 8 2019

Chứng minh

căn 9 + căn 17 + căn 9 - căn 17 =căn 34

căn 8 + căn 15 + căn 8 - căn 15 =căn 30

Thiếu chứng minh điều kiện bằng j bạn ơi

16 tháng 8 2019

ban ghi ro de bai duoc ko ? mik ko hieu de bai

\(1,\hept{\begin{cases}x+\frac{3x-y}{x^2+y^2}=3\left(1\right)\\y-\frac{x+3y}{x^2+y^2}=12\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow x-y+\frac{4x-4y}{x^2+y^2}=-9\)

3 tháng 3 2020

Bn có nhầm đâu ko thế trừ thì đổi dấu thành \(\frac{3x-y}{x^2+y^2}+\frac{x+3y}{x^2+y^2}=\frac{4x+2y}{x^2+y^2}\)

2 tháng 3 2020

1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)

=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)

Tham khảo nhé~