\(\hept{\begin{cases}x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1,\hept{\begin{cases}x+\frac{3x-y}{x^2+y^2}=3\left(1\right)\\y-\frac{x+3y}{x^2+y^2}=12\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow x-y+\frac{4x-4y}{x^2+y^2}=-9\)

3 tháng 3 2020

Bn có nhầm đâu ko thế trừ thì đổi dấu thành \(\frac{3x-y}{x^2+y^2}+\frac{x+3y}{x^2+y^2}=\frac{4x+2y}{x^2+y^2}\)

2 tháng 3 2020

1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)

=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)

Tham khảo nhé~

ĐK \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\\x+y=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8a^2+b=\frac{3}{2a}\\b^2+a=\frac{3}{2b}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}16a^3+2ab=3\\2b^3+2ab=3\end{cases}}\)

\(\Rightarrow16a^3=2b^3\Rightarrow8a^3=b^3\)

\(\Rightarrow2a=b\)

\(\Rightarrow\frac{2}{x}=x+y\Leftrightarrow x^2+xy-2=0\)

Rút y thay vào hệ là ra

16 tháng 2 2019

\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)

\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)

Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)

\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)

\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)

\(\Leftrightarrow4a^2-6a+2=0\)

Làm nốt

2, ĐKXĐ \(x\ge1,y\ge0\)

 \(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)  

Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\) 

<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(2y+1-x\right)=0\) 

Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=>  \(x=2y+1\) 

Thay x=2y+1 vào (2) 

Đoạn này bn tự giải tiếp nhé 

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)