Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge4+2+5=11\)
(2x + y)x \(\le2x\) <=> \(2x^2+xy\le2x\)(1)
Vì \(0\le x\le y\Leftrightarrow y-x\ge0\) mà \(y\le1\Rightarrow\left(y-x\right)y\le y-x\) (2)
Lấy (1) + (2) => \(2x^2+y^2\le x+y\)
áp dụng BĐT bun nhi a cốp xki :
\(\left(2x^2+y^2\right)^2\le\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}\sqrt{2}x+1\cdot y\right)^2\le\left(2x^2+y^2\right)\left(\frac{1}{2}+1\right)\)
Vì \(2x^2+y^2\ge0\) chia cả hai vế cho 2x^ 2 + y^2 ta đc ĐPCM . Dấu = xảy ra khi .... ( tự tìm )
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
Hướng dẫn:
Ta có: \(x\le1\Rightarrow1-x\ge0\); \(x+y-3\ge0\)
Đặt: a = 1 - x và b = x + y - 3 ; với a; b không âm
=> y = a + b +2; x = 1 - a
Thế vào ta có: P = \(3\left(1-a\right)^2+3\left(1-a\right)\left(a+b+2\right)+\left(a+b+2\right)^2\)
Tìm min P với a; b không âm.