Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
Áp dụng bđt : \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)
⇒ P= \(\dfrac{1}{x+1}\)+ \(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)
Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Lời giải:
Bạn cần bổ sung điều kiện $x,y,z>0$
\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)
Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$
Xét hiệu:
\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$
$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Nếu tồn tại 1 số bằng 0 \(\Rightarrow P=1\)
Nếu x;y đều dương:
\(P=\dfrac{x^2}{xy+x}+\dfrac{y^2}{xy+y}\ge\dfrac{\left(x+y\right)^2}{2xy+x+y}\ge\dfrac{\left(x+y\right)^2}{\dfrac{1}{2}\left(x+y\right)^2+x+y}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(x=y=\dfrac{1}{2}\)
Bài này có thể tìm được cả max:
\(\left\{{}\begin{matrix}y+1\ge1\Rightarrow\dfrac{x}{y+1}\le x\\x+1\ge1\Rightarrow\dfrac{y}{x+1}\le y\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{x}{y+1}+\dfrac{y}{x+1}\le x+y=1\)
\(P_{max}=1\) khi \(\left(x;y\right)=\left(0;1\right)\) và hoán vị