Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
Đặt `(x+y)/sqrt{xy}=a(a>0)`
`P=a+1/a`
`=a+4/a-3/a`
Áp dụng BĐT cosi:
`a+4/a>=4`
`x+y>=2sqrt{xy}<=>sqrt{xy}/(x+y)<=1/2`
`<=>1/a<=1/2`
`<=>3/a<=3/2`
`<=>P>=4-3/2=8/2`
Dấu "=" `<=>x=y=1.`
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
ta có \(\sqrt{x^2-xy+y^2}=\sqrt{\frac{1}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2}\ge\sqrt{\frac{1}{4}\left(x+y\right)^2}=\frac{1}{2}\left(x+y\right)\)
tương tự ta có các trường hợp còn lại và ta có
\(S\ge\frac{1}{2}\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)\)
đặt \(x+y=a;y+z=b;z+x=c\)
=> \(S\ge\frac{1}{2}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
đặt \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ca+ca}\)
Áp dụng bđt svác sơ ta có
\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
mạt khác Áp dụng bđt cô si ta có
\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\)
=> \(a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\)
=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
=> \(A\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
=> \(S\ge\frac{3}{4}\)
dấu = xảy ra <=> x=y=z>o
ta có \(\sqrt{x^2-xy+y^2}=\sqrt{\frac{1}{4}x^2+\frac{1}{2}xy+\frac{1}{4y^2}+\frac{3}{4}x^2-\frac{3}{2}xy+\frac{3}{4}y^2}\)
\(=\sqrt{\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)}=\sqrt{\frac{1}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2}\)
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
Ta có:\(P=\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}=\left(\frac{x+y}{4\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\right)+\frac{3\left(x+y\right)}{4\sqrt{xy}}\ge2\sqrt{\frac{x+y}{4\sqrt{xy}}.\frac{\sqrt{xy}}{x+y}}+\frac{3.2\sqrt{xy}}{4\sqrt{xy}}\)
\(=1+\frac{3}{2}=\frac{5}{2}\)
Dấu '=' xảy ra khi và chỉ khi x=y
Vậy P đạt GTNN của P là 5/2 khi x=y
-.-