K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

sai đề

11 tháng 4 2017

Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+y^2}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

BĐT cuối đúng vì x.y > 0 => đpcm

10 tháng 1 2018

có vẻ viết nhầm Bước2

5 tháng 4 2018

Hmm trong đề làm gì có z vậy bạn ?????

\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+y^2\right)\left(1+x^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(-x+y-xy^2+x^2y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\left(\forall x;y\ge0\right)\)

Vậy \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

16 tháng 10 2017

z đâu ra??? hum

16 tháng 10 2017

19 tháng 3 2018

1)\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|+3=5\\\left|x-2\right|+3=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=2\\\left|x-2\right|=-8\left(loai\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

23 tháng 4 2018

Câu a :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{9}{x+y+z}\right)\ge9\)

Câu b : Sửa lại đề nha :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\dfrac{9}{\left(a+b+c\right)^2}\)

\(a+b+c\le\Rightarrow\left(a+b+c\right)^2\le1\)

\(\Rightarrow\) \(\dfrac{9}{\left(a+b+c\right)^2}\ge9\)

24 tháng 4 2018

Mơn 😊

NV
21 tháng 2 2019

Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)

Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)

Giải:

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)

\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)

NV
21 tháng 2 2019

Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?

Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm