K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2020

\(VT=27x^2-36x+12+\frac{15x-7}{1-x}+7\)

\(VT=\frac{-27x^3+63x^2-33x+5}{1-x}+7=\frac{\left(3x-1\right)^2\left(5-3x\right)}{1-x}+7\)

Do \(x< 1\Rightarrow\left\{{}\begin{matrix}5-3x>0\\1-x>0\end{matrix}\right.\) \(\Rightarrow\frac{\left(3x-1\right)^2\left(5-3x\right)}{1-x}\ge0\)

\(\Rightarrow VT\ge7\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{3}\\y=\frac{2}{3}\end{matrix}\right.\)

25 tháng 4 2020

cảm ơn ạ ^^

19 tháng 6 2015

Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)

      \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\)  (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)

Thay x + y = 1 vào B ta có 

    \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)

  \(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)

A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)

Sorry mình không giúp đc bạn

9 tháng 1 2020

We have:

\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)

Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)

Dau '=' xay ra khi \(x=y=z=1\)

22 tháng 4 2017

Áp dụng BĐT AM-GM ta có: 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)

\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)

Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

8 tháng 2 2021

dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé

8 tháng 4 2018

Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)

\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)

\(=1+\frac{2}{xy}\)

Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)