K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

P/s : hướng dẫn giải

\(x^2+y^2=x+y\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}\)

Tiếp tục đặt ẩn phụ \(a=x-\frac{1}{2};b=y-\frac{1}{2}\)

Lúc đó ta sẽ chuyển về tìm Min , Max của \(F=a+2b+\frac{3}{2}\)

Ta có : \(a^2+b^2=\frac{1}{2}\) . Áp dụng bất đẳng thức Bunhiacôpsky ta có :

\(\left(a+2b\right)^2=\left(1.a+2.b\right)^2\le\left(1+4\right)\left(a^2+b^2\right)=\frac{5}{2}\)

\(\Rightarrow\frac{3-\sqrt{10}}{2}\le F\le\frac{3+\sqrt{10}}{2}\)

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

10 tháng 12 2017

bạn ơi hình như có chút sai đề

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

NV
29 tháng 4 2020

\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)

\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=1\)