K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

\(x+y=2\Rightarrow y=2-x\)

\(xy=x.\left(2-x\right)=2x-x^2=-\left(x^2-2x\right)\)

                                                    \(=-\left(x^2-2x+1-1\right)=-\left(x-1\right)^2+1=1-\left(x-1\right)^2\le1\)

=> đpcm

( Dấu "=" xảy ra <=> x = 1 => y = 2 - x = 2 - 1 = 1 )

6 tháng 1 2019

Bạn có cách giải bằng hình ko ạ

5 tháng 10 2018

Ta có

\(\hept{\begin{cases}2x^2-y^2=1\left(1\right)\\xy+x^2=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4x^2-2y^2=2\left(2\right)\\xy+x^2=2\left(3\right)\end{cases}}\)

trừ (2) cho (3) vế với vế ta được

\(3x^2-2y^2-xy=0\Rightarrow3x\left(x-y\right)+2y\left(x-y\right)=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-y=0\\3x+2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=-\frac{2y}{3}\end{cases}}}\)

Sau đó bạn thay vào (1) rồi giải tiếp nhé

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\)

\(\left(\sqrt{2x-5}\right)^2=7^2\)

\(2x-5=49\)

\(2x=54\)

\(x=27\)

2) \(3+\sqrt{x-2}=4\)

\(\sqrt{x-2}=1\)

\(\left(\sqrt{x-2}\right)^2=1^2\)

\(x-2=1\)

\(x=3\)

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)

\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)

2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)

3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

6) \(ĐK:x\ge-2\)

 \(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

7) \(ĐK:x\ge-1\)

\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)

\(a,\sqrt{2x-1}=2\)

\(\Rightarrow2x-1=4\)

\(\Rightarrow2x=5\)

\(\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{2x-1}=x+1\)

\(\Rightarrow2x-1=\left(x+1\right)^2\)

\(\Rightarrow2x-1=x^2+2x+1\)

\(\Rightarrow x^2+2x-2x=-1-1\)

\(\Rightarrow x^2=-2VN\)

30 tháng 11 2019

Ảo diệu như hay.

ĐKXĐ: \(x\le2\)

\(PT\Leftrightarrow\left(2\sqrt{2-x}+3\right)\left(1-\sqrt{2-x}\right)\left(3-4x-2\sqrt{2-x}\right)=0\)

...

30 tháng 12 2020

556667576

NM
1 tháng 9 2021

ta có :

\(\frac{1}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=1+\left(\frac{sinx}{cosx}\right)^2=1+tan^2x\)

\(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=1+\left(\frac{cosx}{sinx}\right)^2=1+cot^2x\)

25 tháng 9 2021

cái thứ 2 em tải hình xuống đề phòng hình 1 mất ạ

 

Bài 1: 

1: \(\sqrt{3+2\sqrt{2}}=\sqrt{2}+1\)

2: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

3: \(\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)

4: \(\sqrt{7-2\sqrt{10}}=\sqrt{5}-\sqrt{2}\)