Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
|x|\(\ge\)0
|y|\(\ge\)0
=>|x|+|y|\(\ge\)0
mà:|x|+|y|\(\le\)0
=>|x|+|y|=0
=>|x|=|y|=0
=>x=y=0
Ta có : \(\left|x\right|\ge0\) Với mọi x
\(\left|y\right|\ge0\) Với mọi y
Theo đầu bài và định ngĩa ta có :
\(0\le\left|x\right|\le3\) => \(\left|x\right|\in\left\{0;1;2;3\right\}\)
=> \(x\in\left\{0;1;-1;2;-2;3;-3\right\}\)
\(0\le\left|y\right|\le5\) => \(\left|y\right|\in\left\{0;1;2;3;4;5\right\}\)
=> \(y\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5\right\}\)
Vì x - y = 2 => Các trường hợp xảy ra là :
- Khi x = 0 => y = -2
- Khi x = 1 => y = -1
- Khi x = -1 => y = -3
- Khi x = 2 => y = 0
- Khi x = -2 => y = -4
- Khi x = 3 => y = 1
- Khi x = -3 => y = -5
a) 4x - 15 = -75 -x
4x+x = -75 + 15
5x = 60
x= 60: 5
=> x= 12
b) 3| x-7| = 21
|x-7|= 21:3
|x-7|=7
=> x-7 =7 hoặc x-7=-7
+) x-7=7
x=7+7=14
+) x-7=-7
x= -7+7=0
=> x=14 hoặc x=0
c) Áp dụng t/c phân số bằng nhau
=> x= \(\frac{-3.\left(-2\right)}{6}\)=\(\frac{6}{6}\)=1
Thay x=1 => y= \(\frac{\left(-2\right).\left(-18\right)}{1}\)=\(\frac{36}{1}\)=36
Thay y =36 => z=\(\frac{\left(-18\right).24}{36}\)=\(\frac{-432}{36}\)=-12
vậy (x,y,z)= (1;36;-12)
(câu d dài quá vs lại cx dễ nên bn tự lm nha mk chỉ giúp đến đây thôi)
x = ( -3 ) , y = ( -5 )
x = ( -2 ) , y = 0
x= ( -1 ) , y = ( -3 )
x=0,y=(-2)
x=1,y=(-1)
x=2,y=0
x=3,y=1
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2