K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

cái này làm bình thường nha bạn

2 tháng 7 2017

giải hộ mình đi mình kém mấy bài Min Max lắm

20 tháng 8 2017

theo định lí Vi-Et nha bạn

15 tháng 2 2020

Dễ thấy P>0. Ta có: \(P^2-\frac{8}{9}=\frac{\left(x-y\right)^2\left(x^2+4xy+y^2\right)}{9\left(xy+1\right)^2}\)

Suy ra \(P\ge\frac{2\sqrt{2}}{3}\). Đẳng thức xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

P/s: Phân tích trên chỉ đúng khi \(x^2+y^2=1\) :))

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

3 tháng 1 2021

Ta khẳng định : Dấu '=' xảy ra tại x=a, y=b, z=c

Khi đó \(4a+3b+4c=22;\frac{1}{3x}=\frac{1}{3a}=\frac{x}{3a^2},\frac{2}{y}=\frac{2}{b}=\frac{2y}{b^2},\frac{3}{z}=\frac{3}{c}=\frac{3z}{c^2}\)và :

\(\frac{1}{3x}+\frac{x}{3a^2}\ge\frac{2}{3a},\frac{2}{y}+\frac{2y}{b^2}\ge\frac{4}{b},\frac{3}{z}+\frac{3z}{c^2}\ge\frac{6}{c}\)

\(\Rightarrow P\ge x+y+z+\left(\frac{2}{3a}-\frac{x}{3a^2}\right)+\left(\frac{4}{b}-\frac{2y}{b^2}\right)+\left(\frac{6}{c}-\frac{3z}{c^2}\right)\)

\(=\left(1-\frac{1}{3a^2}\right)x+\left(1-\frac{2}{b^2}\right)y+\left(1-\frac{3}{c^2}\right)z+\left(\frac{2}{3a}+\frac{4}{b}+\frac{6}{c}\right)\)(*)

Ta chọn a,b,c thích hợp để sử dụng giả thiết \(4x+3y+4z=22\).. Vậy thì các hệ số của x,y,z trong (*) phải thỏa:

\(\hept{\begin{cases}4a+3b+4c=22\\\frac{1-\frac{1}{3a^2}}{4}=\frac{1-\frac{2}{b^2}}{3}=\frac{1-\frac{3}{c^2}}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}}\)

9 tháng 6 2019

dưới mẫu là x + y + 2 mới đúng đề bạn à