Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{5\left(x-1\right)}{4}+\frac{5}{x-1}+\frac{9\left(y-1\right)}{4}+\frac{9}{y-1}+\frac{7}{4}\left(x+y\right)+\frac{7}{2}\)
\(S\ge2\sqrt{\frac{25\left(x-1\right)}{4\left(x-1\right)}}+2\sqrt{\frac{81\left(y-1\right)}{4}}+\frac{7}{4}.6+\frac{7}{2}=28\)
\(\Rightarrow S_{min}=28\) khi \(x=y=3\)
S=5/4(x-1)+5/x-1+9/4(y-1)+9/(y-1)+7/4(x+y)+7/2
=5/4(x-1)+5/(x-1)+9/4(y-1)+9/y-1+14
=>S>=2*5/2+2*9/2+14=28
Dấu = xảy ra khi x=y=3
Sửa đề:
\(\dfrac{x^2y}{x-1}+\dfrac{y^2z}{y-1}+\dfrac{z^2x}{z-1}=\dfrac{x^2y^2}{xy-y}+\dfrac{y^2z^2}{yz-z}+\dfrac{z^2x^2}{zx-x}\)
\(\ge\dfrac{\left(xy+yz+zx\right)^2}{xy+yz+zx-6}\)
Đặt \(t=xy+yz+zx>x+y+z=6\) thì ta có
\(\dfrac{t^2}{t-6}=24+\dfrac{t^2-24t+144}{t-6}=24+\dfrac{\left(t-12\right)^2}{t-6}\ge24\)
Vậy GTNN là 24 đạt dược khi \(x=y=z=2\)
\(M=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\ge\dfrac{2}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{8}{\left(x+y\right)^2}=8\)
\(\Rightarrow M_{min}=8\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(S=\frac{5\left(x-1\right)}{4}+\frac{5}{x-1}+\frac{9\left(y-1\right)}{4}+\frac{9}{y-1}+\frac{7}{4}\left(x+y\right)+\frac{7}{2}\)
\(S\ge2\sqrt{\frac{5\left(x-1\right).5}{4\left(x-1\right)}}+2\sqrt{\frac{9\left(x-1\right).9}{4\left(y-1\right)}}+\frac{7}{4}.6+\frac{7}{2}=28\)
\(\Rightarrow S_{min}=28\) khi \(x=y=3\)
Tại sao lại chọn 5/4 và 9/4. Sao không phải là những số khác. 5 vì đã có 5/(x-1) và 9 vì đã có 9/(y-1). Tại sao lại chọn mẫu số là 4? Có quy luật nào không?
chat lop 8.
x+y=1
(x-y)^2 ≥0
x^2+y^2-2xy ≥0
x^2+y^2≥2xy
x^2+y^2+2xy≥2xy+2xy
(x+y)^2≥4xy
1≥4xy
xy≤1/4
x,y>0=>xy>0
<=>1/xy≥4
(x+y)/xy≥4 ™#{1=x+y}!
1/y+1/x≥4
1/x+1/y≥4
Áp dụng BĐT Cô - si dạng Engel , ta có :
\(A=\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{1}=4\)
⇒ AMIN = 4 ⇔ x = y = \(\dfrac{1}{2}\)
Dự đoán dấu "=" xảy ra khi \(x=y=2\) thì ta có \(P=8\)
Ta chứng minh nó là GTNN của P
Thật vậy, áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge\dfrac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(x+y=t\left(t>2\right)\) thì cần c/m:
\(\dfrac{t^2}{t-2}\ge8\Leftrightarrow\dfrac{t^2-8t+16}{t-2}\ge0\Leftrightarrow\dfrac{\left(t-4\right)^2}{t-2}\ge0\) (đúng với \(t>2\))
Vậy \(P_{Min}=8\) khi \(x=y=2\)
Dự đoán dấu "=" xảy ra khi x=y=2x=y=2 thì ta có P=8P=8
Ta chứng minh nó là GTNN của P
Thật vậy, áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
P=x2y−1+y2x−1≥(x+y)2x+y−2P=x2y−1+y2x−1≥(x+y)2x+y−2
Đặt x+y=t(t>2)x+y=t(t>2) thì cần c/m:
t2t−2≥8⇔t2−8t+16t−2≥0⇔(t−4)2t−2≥0t2t−2≥8⇔t2−8t+16t−2≥0⇔(t−4)2t−2≥0 (đúng với t>2t>2)
Vậy PMin=8PMin=8 khi x=y=2
bạn thay y=6-x vào S rồi giải bình thường