K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 6 2021

a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).

b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).

c)  \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).

d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).

e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).

f) ​\(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).

27 tháng 6 2021

mn ơi giúp mik vs!!!

6 tháng 7 2018

x=13b-2013b-20 (b thuộc Z)

a)x là số hữu tỉ

 Ta có:\(13b-2013b-20=\frac{13b-2013b-20}{1};1\ne0\)

\(\Rightarrow x\) Là số hữu tỉ.

b)x là số hữu tỉ dương

Để x là số hữu tỉ dương thì: 13b-2013b-20>0\(\Leftrightarrow-2000b>20\Leftrightarrow b>\frac{-1}{100}\)

c)x=-2

\(\Leftrightarrow-2=13b-2013b-20\) \(\Leftrightarrow-2000b=18\Leftrightarrow b=\frac{9}{1000}\)

d)x>1

\(\Leftrightarrow13b-2013b-20>1\Leftrightarrow-2000b>21\Leftrightarrow b>\frac{-21}{2000}\)

e)x<3

\(\Leftrightarrow13b-2013b-20< 3\Leftrightarrow-2000b< 23\Leftrightarrow b< \frac{-23}{2000}\)

 Đề phải là xác định b chứ 

7 tháng 7 2018

Xin lỗi bạn nhé! Đề bài là 13/b-20 chứ ko phải là 13b-2013b-20

Bạn có thể làm lại hộ mình ngay đc ko. Mình đang cần gấp

16 tháng 6 2019

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

17 tháng 6 2019

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)

26 tháng 8 2016

minh cung chiu bai nay

26 tháng 8 2016

ai giup minh voi