K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

1) Xét 1/k^2 = 1/(k.k) < 1/[k(k - 1)] = 1/(k - 1) - 1/k 
Do đó : 
1/2^2 < 1/1 - 1/2 
1/3^2 < 1/2 - 1/3 
... 
1/n^2 < 1//(n - 1) - 1/n 

Suy ra : 
1+ (1/2^2+1/3^2+...+1/n^2) < 1 + (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .. + [1/(n - 1) - 1/n] = 2 - 1/n < 2 (đpcm) 

2) Đặt A = (u+1/u)^2 + (v+1/v)^2 
Áp dụng BĐT 2(a^2 + b^2) >= (a + b)^2 (dễ cm BĐT này) 
Ta có : 2A = 2[(u+1/u)^2 + (v+1/v)^2] >= (u + 1/u + v + 1/v)^2 = (1 + 1/u + 1/v)^2 (vì u + v = 1) (1) 
Nhận xét rằng ta có (u + v)(1/u + 1/v) >= 4 (cũng dễ cm được BĐT này) 
=> 1/u + 1/v >= 4 (do u + v = 1) 
=> (1 + 1/u + 1/v)^2 >= (1 + 4)^2 = 25 (2) 
Từ (1)(2) ta có 2A >= 25 hay A >= 25/2 (đpcm) 
Đẳng thức xảy ra khi u = v = 1/2

6 tháng 8 2020

Sử dụng BĐT Svacxo ta được :

\(LHS\ge\frac{\left(u+\frac{1}{u}+v+\frac{1}{v}\right)^2}{2}=\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\)

Lại tiếp tục sử dụng BĐT Svacxo ta được :

\(\frac{1}{u}+\frac{1}{v}=\frac{1^2}{u}+\frac{1^2}{v}=\frac{\left(1+1\right)^2}{u+v}=\frac{4}{u+v}=4\)

Khi đó \(\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(u=v=\frac{1}{2}\)

Vậy ta có điều phải chứng minh

20 tháng 8 2018

a) b 3 + 3 b 2 + 2 b 3 + 1 .          b) 0.

NV
6 tháng 2 2020

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

4 tháng 7 2017

Giải:

Ta có: \(U_{n-1}=\dfrac{3U_n-U_{n+1}}{2}\) nên:

\(U_4=340;U_3=216;U_2=154;U_1=123\)

Từ \(U_5=588;U_6=1084;U_{n+1}=3U_n-2U_{n-1}\)

\(\Rightarrow\) \(U_{25}=520093788\)

Vậy \(U_2=154;U_1=123;\) \(U_{25}=520093788\)

30 tháng 7 2018

u^2v^2(u+v)^2-(u^2v+uv^2)^2 - Step-by-Step Calculator - Symbolab

Tham khảo ở đó nhé!

30 tháng 7 2018

bn có thể tham khảo mà đúng ko 

17 tháng 6 2021

a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)

Thay t = -1 và s = 1 vào biểu thức trên ta được :

\(1+1+1+1=4\)

b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)

\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)

Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)

6 tháng 9 2018

\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2\right)^2+2.5xy^2.3z+\left(3z\right)^2=\left(5xy^2+3z\right)^2\)

\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=\left(\frac{4}{3}x\right)^2+2.\frac{4}{3}x.\frac{3}{2}yz^2+\left(\frac{3}{2}yz^2\right)^2=\left(\frac{4}{3}x+\frac{3}{2}yz^2\right)^2\)

\(\frac{9}{25}x^2+\frac{12}{35}xy+\frac{4}{49}y^2=\left(\frac{3}{5}x\right)^2+2.\frac{3}{5}x.\frac{2}{7}y+\left(\frac{2}{7}y\right)^2=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2\)( tự thay vào tính nhé )

\(\frac{25}{16}u^4y^2+\frac{1}{5}u^2+y^3+\frac{4}{625}y^4=\left(\frac{5}{4}u^2y\right)^2+2.\frac{5}{4}u^2y.\frac{2}{25}.y^2+\left(\frac{2}{25}y^2\right)^2=\left(\frac{5}{4}u^2y+\frac{2}{25}y^2\right)^2\)( tự thay vào tính nhé )

Tham khảo nhé~