K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

um... bạn có thiếu đề ko z.. u1, u2 = bao nhiu z

18 tháng 5 2017

a)thay n=1,2,3,4 vào công thức Un=\(\frac{\left(10+\sqrt{3}\right)^n-\left(10-\sqrt{3}\right)^n}{2\sqrt{3}}\),ta có :

U1=1;U2=20;U3=303;U4=4120

b)giả sử Un+2 =aUn+1 + bUn (*)

thay  N=1,2 vào (*)

=>\(\hept{\begin{cases}U3=aU2+bU1\\U4=aU3+bU2.\end{cases}}\)

thay các giá trị U1=1;U2=20         ,U3=303          ,U4=4120

=>\(\hept{\begin{cases}a=20\\b=-97\end{cases}}\)

=>Un+2=20Un+1 - 97Un

c) Đưa U1=1 gán vào A bằng cách  1 shift RCL (-)

Đưa U2=20 gán  vào B bằng cách 20 shift RCL '''

khởi tạp biến đếm D:2 gán vào D bằng cách 2 shift RCl sin

ghi vào màn hình D=D+1:A=20B-97A:D=D+1:B=20A-97B

ấn calc lặp phím= đến khi D=D+1=5

ta được U5=53009, tương tự U6=660540,U7=8068927;U8=97306160:U9=1163437281,.....(tự tính tiếp)

24 tháng 6 2017

ĐÈ SAI THÌ PHẢI

Un+1=Un+Un+1 thì hóa ra Un bằng 0 àk

30 tháng 6 2017

1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục

D=D+1:C=2B+A:E=E+C:A=B:B=C

CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục

Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182

2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục

D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B

CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục

a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983

b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711

3 tháng 9 2018

Mình sửa câu b) nhé:

b) Viết quy trình tìm số hạng nhỏ nhất trong tất cả các số hạng của dãy sao cho: Un = n + 9696/n^2

17 tháng 7 2021

a) \(u_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n^2+2n+1}{\left[n\left(n+1\right)\right]^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}\in Q\)

b) \(u_n=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Vậy \(S_{2021}=u_1+u_2+...+u_{2021}=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2021}-\frac{1}{2022}\)

\(=2022-\frac{1}{2022}=\frac{2022^2-1}{2022}\)