K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Bạn tự vẽ hình nha ==''

a.

AB _I_ BC

AB _I_ AD

=> AD // BC

b.

AD // BC

=> C + D = 1800 (2 góc kề bù)

\(C=3D\Rightarrow\frac{C}{3}=\frac{D}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{C}{3}=\frac{D}{1}=\frac{C+D}{3+1}=\frac{180^0}{4}=45^0\)

\(\frac{C}{3}=45^0\Rightarrow C=45^0\times3=135^0\)

\(\frac{D}{1}=45^0\Rightarrow D=45^0\)

Chúc bạn học tốt ^^

23 tháng 11 2021

Answer:

A) Ta có: AD // BC

\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow60^o+\widehat{BAD}=180^o\)

\(\Rightarrow\widehat{BAD}=120^o\)

\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)

\(\Rightarrow\widehat{DAC}=30^o\)

B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D

\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)

\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)

Tứ giác ABCD có:

AD // BC (giả thiết)

Hai góc kề đáy CD bằng nhau

=> ABCD là hình thang cân

C) Theo phần b): ABCD là hình thang cân

=> AB = CD mà AD = CD (giả thiết)

=> AB = AD

Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)

=> AB = BC : 2 = BE = EC

Mà ta có: AB = AD => AD = BE

Tứ giác ADEB có:

AD // BE

AD = BE

=> Nên là hình bình hành

Ta có: AD = AB => ADEB là hình thoi

D E B A C

8 tháng 7 2017

Hỏi thầy Bách ý tao còn câu 2

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0