\(\sqrt{2}\) cạnh bên bằng 2a. Gọi M là tđ SC. Mặt phẳng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

16 tháng 4 2022

Đáp án D

chúc bạn họk tốt!  0ω0

13 tháng 10 2018

1 tháng 4 2017

ình chóp S.ABCD là hình chóp đều nên chân H của đường cao SH chính là tâm của đáy. Mặt phẳng đi qua AM và song song với BD cắt mặt phẳng (SDB) theo một giao song song với BD, hay EF // BD.

Ta dựng giao tuyến EF như sau : Gọi I là giao điểm của AM và SH Qua I ta dựng một đường thẳng song song với BD, đường này cắt SB ở E và cắt SD ở F. Ta có góc SAH= 60°. Tam giác cân SAC có SA = SC và SAC = 60° nên nó là tam giác đều: I là giao điểm của các trung tuyến AM và SH nên:

dap-an-bai-9

Chọn C

5 tháng 4 2016

S M H G N A O D C

Ta có \(\begin{cases}BC\perp SA\\BC\perp AB\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\)\(\Rightarrow BC\perp AM\) (vì \(AM\subset\left(SAB\right)\left(1\right)\)

Mặt khác \(SC\perp\alpha\Rightarrow SA\perp AM\) (vì \(AM\subset\alpha\)) (2)

Từ (1) và (2) suy ra \(AM\perp\left(SBC\right)\Rightarrow AM\perp MG\) (vì \(MG\subset\left(SBC\right)\))

\(\Rightarrow\Delta AMG\) vuông tại M, tương tự ta cũng có tam giác ANG vuông tại N \(\Rightarrow\) tâm H đường tròn đáy của (H) là trung điểm AG, có bán kính \(R=\frac{AG}{2}\)

Xét tam giác vuông SAC tại A có \(AG=\frac{SA.AC}{SC}=\frac{\sqrt{6}}{3}a\Rightarrow R=\frac{\sqrt{6}}{6}a\)

Vì OH là đường cao (H)\(\Rightarrow OH\perp\alpha\Rightarrow OH\)//\(SC\Rightarrow O\) là giao điểm hai đường chéo AC, BD

\(\Rightarrow OH=\frac{1}{2}CG\).

Xét tam giác vuoongSAC có AG là đường cao, nên \(CG=\frac{AC^2}{SC}=\frac{2}{\sqrt{3}}a\Rightarrow OH=\frac{\sqrt{3}}{3}a\)

Vậy thể tích hình nón là \(V_{\left(H\right)}=\frac{1}{3}\pi.R^2.OH=\frac{\sqrt{3}}{54}\pi a^3\)

23 tháng 10 2019

Đáp án B

Hướng dẫn giải:

Gọi H là tâm của đáy khi đó  S H ⊥ ( A B C D )

Lại có  S H = H A   tan 60 o = a 6 2

V S . A B C D = 1 3 S H . S A B C D = a 3 6 6

Mặt khác, gọi  G = S H ∩ A M

⇒ G là trọng tâm của tam giác SAC.

Do đó  S G S H = 2 3

Qua G dựng đường thẳng song song với BD cắt SB, SD lần lượt tại P và Q

Khi đó  V S . A B M V S . A B C = S P S B . S M S C = 1 3

từ đó suy ra  V S . A P M Q V S . A B C D = 1 3

Do vậy  V S . A P M Q = a 3 6 18

⇒ 18 V a 3 = 6