K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

vậy câu c làm sao bạn ? mik làm dc 2 câu ấy chỉ lưa câu c thôi... bạn giúp mik được ko ?

 

1 tháng 5 2016

mik nghĩ câu a.b. bn làm đc,

c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân)    (1)

 xét 2 tam giácvuông BDM và ta giác vuông CDM 

  MD chung,

MB=MC(trung tuyến AM)

=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)

=>DM là trung tuyến của BC   (2)

từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng

mik làm sai ở đâu thì nhắc nha

 

 

 

1 tháng 5 2016

leuleucó bn nào lp 7 ko???

a: Xét ΔABK và ΔHCK có

KA=KH

góc AKB=góc HKC

KB=KC

Do đo: ΔABK=ΔHKC

b: \(BC=\sqrt{8^2+10^2}=2\sqrt{41}\)

\(AK=\dfrac{BC}{2}=\sqrt{41}\)

c: Ta co: ΔEAD vuông tại A

mà AI là đường trung tuyến

nên IA=IE

=>ΔIAE cân tại I

=>\(\widehat{IAE}=\widehat{IEA}\)

25 tháng 2 2018

1). Tứ giác OBCD nội tiếp và CO là phân giác góc B C D ^ , suy ra  O B D ^ = O C D ^ = O C B ^ = O D B ^  , nên tam giác OBD cân tại O, do đó OB=OD (1).

Tứ giác OBCD nội tiếp O D C ^ = O B E ^  (cùng bù với góc OBC) (2).

Trong tam giác CEF CO vừa là đường cao vừa là đường phân giác nên tam giác CEF cân tại .

Do  A B ∥ C F ⇒ A E B ^ = A F C ^ = E A B ^ , suy ra tam giác ABE cân tại B, nên B E = B A = C D   ( 3 )  

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

Giúp mik với mik đang cần gấp

0
6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .