Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I E O
Cô hướng dẫn nhé. :)
Tứ giác AIDE nội tiếp đường tròn đường kính AI.
b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.
c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )
Chúc em học tốt ^^
b)
+ Xét đt (o) có
tứ giác BFACN nội tiếp đt
\(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)
CÓ :
BD là tiếp tuyến đt (o) tại B(gt)
\(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)
\(\rightarrow\)BD vuông góc BC (O thuộc BC)
\(\rightarrow\) DBC = 90(dn)
\(\rightarrow\)tam giác DBC vuông tại B
xét tam giác vuông DBC cso
BDC+DCB=90(2 góc phụ nhau trong tg vuông) (1)
+Xét đt (o) có:
BAC= 90 ( góc nt chắn nửa dtđk BC)
\(\rightarrow\)tam giác BAC vuông tại A
Xét tam giác vuông BAC có
ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)
\(\rightarrow\) ABC+DCB=90(A thuộc DC ) (2)
từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)
Mà AFC=ABC(CMT)
\(\rightarrow\) BDC=AFC(=ABC)
+Có :
AFC+AFE=180( 2 góc kề bù)
Mà 2 góc ở vị trí đối nhau
\(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)
|
a.Ta có BCBC là đường kính của (O)→AB⊥AC(O)→AB⊥AC
Mà HM⊥BCHM⊥BC
→ˆHAC=ˆHMC=90o→HAC^=HMC^=90o
→HACM→HACM nội tiếp đường tròn đường kính CHCH
b.Ta có AHMCAHMC nội tiếp
→ˆHAM=ˆHCM=ˆDCB=ˆDAB→HAM^=HCM^=DCB^=DAB^
→AB→AB là phân giác ˆDAMDAM^
c.Vì BCBC là đường kính của (O)→CD⊥BD→CD⊥BI(O)→CD⊥BD→CD⊥BI
Xét ΔIBCΔIBC có IM⊥BC,CD⊥BIIM⊥BC,CD⊥BI
Mà IM∩CD=H→HIM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥ICΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,CAB⊥AC→I,A,C thẳng hàng
Xét ΔBDH,ΔBAIΔBDH,ΔBAI có:
Chung ^BB^
ˆBDH=ˆBAI=90oBDH^=BAI^=90o
→ΔBDH∼ΔBAI(g.g)→ΔBDH∼ΔBAI(g.g)
→BDBA=BHBI→BDBA=BHBI
→BD.BI=BH.BA
c) Vì F C H = F D H = 90 o nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH
=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI
=> OI là phân giác của góc COD
d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o
Có C A D = 1 2 C O D = 30 o = > C F D = 90 o − C A D = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Mặt khác COI = DOI = C O D 2 = 30 o = > O I D + D O I = 90 o = > Δ O I D vuông tại D
Suy ra O I = O D sin 60 o = 2 R 3
Vậy I luôn thuộc đường tròn O ; 2 R 3