Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2= (AB +CD)/2
Vậy EF ≤ (AB +CD)/2
a) Hình thang cân ABCD, có:
AB // CD; AD = BC
Xét hình tam giác ACB, có:
I là trung điểm BC (gt)
Q là trung điểm AC (gt)
=> IQ là đường trung bình tam giác ACB
=> IQ // AB
mà AB // CD (cmt)
=> IQ // CD
Xét tam giác ACD, có:
Q là trung điểm AC 9gt)
P là trung điểm CD (gt)
=> QP là đường trung bình tam giác ACD
=> QP = 1/2 AD
mà AD = BC (I là trung điểm BC)
=> IB = IC = QP
Xét tứ giác QIPC, có:
QI // PC (cmt)
=> tứ giác QIPC là hình thang
có: QP = IC (cmt)
=> tứ giác QIPC là hình thang cân (đpcm)
b) Xét tam giác ABC, có:
QI là đường trung bình tam giác ABC (cmt)
=> tam giác CQI = 1/2 tam giác ABC
=> SQIC = 1/2 SABC
Cmtt: SCPQ = 1/2 SACD
mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)
c) Xét tam giác ABC, có:
M là trung điểm AB (gt)
Q là trung điểm AC (gt)
=> MQ là đường trung bình
=> MQ // BC
MQ = 1/2 BC
cmtt: MN // AD; MN = 1/2 AD
NP = 1/2; NP // BC
PQ // AD; QP = 1/2 AD
Xét tú giác MNPQ, có:
MQ // NP (cùng // BC)
MN // QP (cùng //AD)
=> MNPQ là hình bình hành
có: MQ = NP = 1/2 BC
=> MNPQ là hình thoi (đpcm)
p/s: có chỗ nào không hiểu thì inb hỏi nha ~
Áp dụng định lý 2 của đường trung bình trong hình thang
Có AB//CD => ABCD là hình thang. EF là đường trung bình của hình thang
Nên \(\text{EF}=\frac{CD+AB}{2}\) .
Sai rồi vì EF đâu phải đường trung bình đâu, E là trung điểm BD, F là trung điểm AC và đề bài yêu cầu chứng minh EF=(CD-AB)/2 mà.
Trước tiên kẻ AM cắt CD tại I
Ta xét tam giác AMB và IMD
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD)
Vì vậy mà AB=ID và MA=MI
Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI
Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI
nên MN=(1/2)(CD-AB)