Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét (O) có gBAD nội tiếp đường tròn
=>gBAD=90độ=> EA vuông góc FD
gBCD nội tiếp đường tròn
=>gBCD=90độ => FC vuông góc DE
xét tgDEF có EA là đường cao
FC là đương cao
EA cắt FC tại B
=> B là trực tâm của tg
=>DB là đường cao
=> DB vuông góc EF
b,xét tgABF và tgCBE có gBAF=gBCE = 90độ
gABF=gCBE (hai góc đối đỉnh)
=> tgABF ~ tgCBE (g.g)
=> BA/BC= BF/BE
=>BA.BE=BC.BF
c, bn xem lại giùm mk điểm H là điểm nào
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
A B C D O I F E G E'
Gọi đường tròn (BIC) cắt BD trại G khác B. Trên đoạn AD lấy E' sao cho AE' = AF.
Xét \(\Delta\)AIF và \(\Delta\)AIE': AF = AE', ^IAF = ^IAE', AI chung => \(\Delta\)AIF = \(\Delta\)AIE' (c.g.c) => IF = IE'
Xét (BIC): ^FBG nội tiếp, BI là phân giác ^FBG, I thuộc (BIC) => (IF = (IG => IF = IG. Từ đó IG = IE'
Dễ thấy: ^IE'A = ^IFA (Do \(\Delta\)AIF = \(\Delta\)AIE') => ^IFB = ^IE'D hay ^IE'D = ^IGD
Từ đó: ^GID = ^E'ID (Vì ^IDE' = ^IDG), kết hợp với IG = IE', cạnh ID chung => \(\Delta\)DGI = \(\Delta\)DE'I (c.g.c)
Suy ra: DG = DE'. Ta lại có: ^CAB = ^CDB; ^CFB = ^CGB => ^FCA = ^GCD
Xét \(\Delta\)CFA và \(\Delta\)CGD: CA = CD; ^CAF = ^CDG; ^FCA = ^GCD => \(\Delta\)CFA = \(\Delta\)CGD (g.c.g)
=> AF = DG. Mà DG = DE' nên AF = DE'. Do đó: DE' = AE' => E' là trung điểm AD => E' trùng E
Như vậy AE = AF và IF = IE suy ra AI là trung trực của EF hay AI vuông góc EF (đpcm),
Tự vẽ hình nha ><
a) ^ABD = 900 => ^ABE = 900
EF \(\perp\)AD => ^EFA = 900
=> Tứ giác ABEF có tổng 2 góc đối = 900 nội tiếp được đường tròn
Ta có: ˆACD=900ACD^=900 (góc nội tiếp chắn nửa đường tròn đường kính AD)
Xét tứ giác DCEF có:
ˆACD=900ACD^=900 (cm trên)
ˆEFD=900EFD^=900 (vì EF⊥ADEF⊥AD (gt))
⇒ˆACD+ˆEFD=1800⇒ACD^+EFD^=1800
=> Tứ giác DCEF là tứ giác nội tiếp đường tròn (đpcm).
b) Vì tứ giác DCEF là tứ giác nội tiếp (chứng minh câu a)
⇒ˆC1=ˆD1⇒C1^=D1^ (góc nội tiếp cùng chắn cung EF) (1)
Mà ⇒ˆC2=ˆD1⇒C2^=D1^ (góc nội tiếp cùng chắn cung AB) (2)
Từ (1) và (2) ⇒ˆC1=ˆC2⇒C1^=C2^
⇒⇒ CA là tia phân giác của ˆBCFBCF^ (đpcm)
k đúng hộ
Ta có : \(sd\widebat{AB}=2.sd\widehat{ADB}=2.15^o=30^o\) ( sd cung bằng hai lần góc nội tiếp chắn cung đó )
: \(sd\widebat{CD}=2.\widehat{DBC}=2.30^o=60^o\) ( sd cũng bằng hai lần góc nội tiếp chắn cung đó )
Ta co : \(sd\widebat{AD}\)+ \(sd\widebat{BC}\)+\(sd\widebat{AB}\)+ \(sd\widebat{CD}\) \(=360^o\)
=> \(sd\widebat{AD}+sd\widebat{BC}=360^o-\left(sd\widebat{AB}+sd\widebat{CD}\right)\)
\(=360^o-\left(30^o+60^o\right)=270^o\)
Ta có : \(sd\widehat{BIC}=\frac{1}{2}\left(sd\widebat{AD}+sd\widebat{BC}\right)=\frac{1}{2}.270^o=135^o\)( góc có đỉnh ở bên trong đường trong bằng nửa tổng số đo hai cung bị chắn )