K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét hình thang ABCD(AB//CD) có 

M là trung điểm của AD(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)

Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)

hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)

b) Ta có: AD//BE(gt)

AD\(\perp\)DC(gt)

Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)

Xét tứ giác ABED có 

\(\widehat{BAD}=90^0\)(gt)

\(\widehat{ADE}=90^0\)(gt)

\(\widehat{BED}=90^0\)(cmt)

Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html

1 tháng 8 2018

mọi người trả lời nhanh jup minh minh đang cần

1 tháng 8 2018

Bài này ko khó đâu. Mình giúp bạn nhé. 

a, ABCD là hình thang cân (gt) \(\Rightarrow\hept{\begin{cases}AD=BC\\\widehat{D}=\widehat{C}\end{cases}}\) (t/c hình thang cân)

Tam giác AHD vuông tại H (gt) có HM là đường trung tuyến ứng với cạnh huyền AD nên HM = 1/2 AD

M là trung điểm của AD (gt)\(\Rightarrow MA=MD=\frac{1}{2}AD\)

Do đó: HM = MD \(\Rightarrow\Delta HMD\)cân tại M

\(\Rightarrow\widehat{D}=\widehat{MHD}\) (Tính chất tam giác cân)

Mà \(\widehat{D}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{MHD}=\widehat{C}\Rightarrow MH//CN\) (vì có 2 góc đồng vị bằng nhau.)

30 tháng 11 2023

a: Xét ΔADC có

M là trung điểm của AD

MN//DC

Do đó: N là trung điểm của AC

Xét ΔCAB có

N là trung điểm của CA

NK//AB

Do đó:K là trung điểm của CB

b: \(AB=\dfrac{1}{2}\cdot DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)

Xét ΔADC có M,N lần lượt là trung điểm của AD,AC

=>MN là đường trung bình của ΔADC

=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)

Xét ΔCAB có N,K lần lượt là trung điểm của CA,CB

=>NK là đường trung bình của ΔCBA

=>\(NK=\dfrac{AB}{2}=5\left(cm\right)\)

MN+NK=MK

=>MK=10+5=15(cm)

19 tháng 3 2020

I A B D C E F K

Gọi I là trung điểm của AB.

Giả sử đường thẳng IE cắt CD tại K1 

Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD

Giả sử đường thẳng IF cắt CD tại K2

Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD 

do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau

Vậy ta có đpcm

19 tháng 3 2020

Bạn ơi gọi luôn I là trung điểm AB thì sai r

4 tháng 9 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Vì MN//AB=>MN//AB//CD(vì AB//CD)

         PQ//DC=>PQ//DC//AB(vì AB//CD)

=>MN//PQ

Xét hình thang ABQP có:      AM=PM(M là trung điểm của AB)

                                              MN//PQ//AB

=>BN=NQ hay N là trung điểm của BQ(1)

Xét hình thang MNCD có:     MP=DP(P là trung điểm của MD)

                                              MN//PQ//CD

=>NQ=QC hay Q là trung điểm của NC(2)

Từ (1) và (2)=>BN=NQ=QC

b,Xét hình thang ABQP có:    AM=PM(M là trung điểm của AP)

                                               BN=QN(N là trung điểm của BQ)

=>MN là đường trung bình của hình thang ABQP

=>MN=\(\frac{AB+PQ}{2}\)

=>AB+PQ=2MN

c, Xét hình thang MNCD có:    MP=DP(P là trung điểm của MD)

                                                 NQ=CQ(Q là trung điểm của NC)

=>PQ là đường trung bình của hình thang MNCD

=>PQ=\(\frac{MN+CD}{2}\)

=>MN+CD=2PQ

d, Vì AB+PQ=2MN =>AB=2MN-PQ(3)

        MN+DC=2PQ =>DC=-MN+2PQ(4)

Cộng từng vế tương ứng của (3) và (4) ta được:

AB+CD=2MN-PQ+(-MN)+2PQ

AB+CD=MN+PQ