Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : O là trung điểm của AH
xét đường tròn tâm O,có:E thuộc đường tròn
→tam giác A,E,H vuông tại E (t/c đường tròn)
F thược đường tròn
→tam giác A,F,H vuông tại F (t/c đường tròn)
Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)
Ê = F =90 (Δ vuông )
→tứ giác A,E,H,F là hình chữ nhật
A B C D O a^2 b^2 M N
(Hình ảnh chỉ mang tính chất minh họa)
a) Kẻ DM và CN vuông góc với AB
=> MN = CD (Theo cách vẽ)
=> DC - AB = MN - AB = MA + BN
=> DC - AB = MA + BN
Tam giác vuông MAD và NBC vuông lần lượt tại M,N
=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)
=> DC - AB = MA + BN < AD + BC (ĐPCM
a) gọi I là trung điểm của CD ta có IC=ID (1)
mặt khác OI _|_ CD nên OI//AH//BK => IH=IK(2)
từ (1) và (2) => CH=DK (đpcm)
b) Gọi C', I', D' lần lượt là hình chiếu của C,I,D trên AB
\(\Delta HIE=\Delta KIF\left(ch.gn\right)\Rightarrow S_{AHKB}=S_{AEFB}=AB\cdot II'\)
ta lại có \(S_{ACB}=\frac{1}{2}AB\cdot CC'\left(3\right);S_{ADB}=\frac{1}{2}AB\cdot DD'\left(4\right)\)
mặt khác \(\frac{CC'+DD'}{2}=II'\left(5\right)\)
từ (3), (4) và (5) ta có \(S_{ACB}+S_{ABD}=AB\cdot II'=S_{AHKB}\)(chỗ này theo mình là SAHKB)
c) \(OI=\sqrt{\frac{AB^2}{4}-\frac{CD^2}{4}}=12\left(cm\right)\)
\(S_{AHKB}=S_{AEFB}=AB\cdot II'\le AB\cdot OI\)
dấu "=" xảy ra khi \(II'=OI\)hay \(OI\perp AB\)lúc này CD //AB
vậy GTLN của \(S_{AHKB}=AB\cdot OI=12\cdot30=360\left(cm^2\right)\)