K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

Cho mình sửa lại là dấu "=" thành dấu \(\le\)

9 tháng 6 2015

Theo mình nghĩ là đề sai

\(s_1+s_2+2\sqrt{s_1s_2}=s\)mà \(s_1+s_2=s-s_3-s_4\)

Thay vào ta được \(2\sqrt{s_1s_2}=s_3+s_4\)

Dùng cô si ta được \(2\sqrt{s_1s_2}\ge2\sqrt{s_3s_4}\)

ta ko thể chứng minh được điều này vì ko có tứ giác được xác định rõ ràng

26 tháng 11 2016

a) ta có : O là trung điểm của AH

xét đường tròn tâm O,có:E thuộc đường tròn

→tam giác A,E,H vuông tại E (t/c đường tròn)

F thược đường tròn

→tam giác A,F,H vuông tại F (t/c đường tròn)

Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)

Ê = F =90 (Δ vuông )

→tứ giác A,E,H,F là hình chữ nhật

 

10 tháng 9 2018

A B C D O a^2 b^2 M N  

(Hình ảnh chỉ mang tính chất minh họa)

a) Kẻ DM và CN vuông góc với AB

=> MN = CD (Theo cách vẽ)

=> DC - AB = MN - AB = MA + BN

=> DC - AB = MA + BN

Tam giác vuông MAD và NBC vuông lần lượt tại M,N

=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)

=> DC - AB = MA + BN < AD + BC (ĐPCM

27 tháng 7 2016

http://olm.vn/hoi-dap/question/90461.html

27 tháng 7 2016

dấu ? là dấu / nha ( ở câu a)

15 tháng 8 2020

a) gọi I là trung điểm của CD ta có IC=ID (1) 

mặt khác OI _|_ CD nên OI//AH//BK => IH=IK(2)

từ (1) và (2) => CH=DK (đpcm)

b) Gọi C', I', D' lần lượt là hình chiếu của C,I,D trên AB

\(\Delta HIE=\Delta KIF\left(ch.gn\right)\Rightarrow S_{AHKB}=S_{AEFB}=AB\cdot II'\)

ta lại có \(S_{ACB}=\frac{1}{2}AB\cdot CC'\left(3\right);S_{ADB}=\frac{1}{2}AB\cdot DD'\left(4\right)\)

mặt khác \(\frac{CC'+DD'}{2}=II'\left(5\right)\)

từ (3), (4) và (5) ta có \(S_{ACB}+S_{ABD}=AB\cdot II'=S_{AHKB}\)(chỗ này theo mình là SAHKB)

c) \(OI=\sqrt{\frac{AB^2}{4}-\frac{CD^2}{4}}=12\left(cm\right)\)

\(S_{AHKB}=S_{AEFB}=AB\cdot II'\le AB\cdot OI\)

dấu "=" xảy ra khi \(II'=OI\)hay \(OI\perp AB\)lúc này CD //AB

vậy GTLN của \(S_{AHKB}=AB\cdot OI=12\cdot30=360\left(cm^2\right)\)