K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

a, xét tam giác ABD có EA=EB <gt>, HB=HD <gt>=>EH//AD

Xét tam giác ADC có FC=FA<gt>, GD=GC<gt>=>FG//AD

=>EH//FG (1)

Chứng minh tương tự :Xét tam giác ABC =>EF//BC

Xét tam giác BDC =>HG//BC

=>EF//HG (2)

=> Tứ giác EFGH là hình bình hành

Kẻ AD vuông góc vs BC tại O

EH//AD, AD vuông góc vs AD => EH vuông góc vs BC

EF//BC , EH vuông góc vs BC =>EF vuông góc vs EH

=> Tứ giác EFGH có góc E=90 nên là hình chữ nhật

b, Chứng minh 2 cạn kề bằng nhau đi

c, Hình chữ nhật cũng là hình thoi 

HÌnh thoi là hình vuông 

=>hình thoi EFGH có góc E =90 <cmt> nên là hình vuông

3 tháng 11 2018

Tẹt Sún tại sao tứ giác ABCD có cạnh AD mà lại kẻ Ad vuông góc với BC nữa vậy ?????

13 tháng 11 2015

tick cho mình rồi mình làm cho

11 tháng 12 2015

trong sách bài tập có mà bn

11 tháng 12 2015

tik mik đi mink tik lại

ok

29 tháng 4 2017

Cái hình hơi khó vẽ! :(

Giải:

Ta có: \(EA=EB,FB=FC\left(gt\right)\)

\(\Rightarrow EF\) là đường trung bình của \(\Delta BAC\)

\(\Rightarrow\) \(EF//AC\)\(EF=\dfrac{AC}{2}\left(1\right)\)

Chứng minh tương tự ta có:

\(HG//AC\)\(HC=\dfrac{AC}{2}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra: \(EF//GH\)\(EF=GH\)

\(\Rightarrow EFGH\) là hình bình hành

a) Hình bình hành \(EFGH\) là hình chữ nhật

\(\Leftrightarrow\widehat{FEH}=90^0\Leftrightarrow EF\perp EH\Leftrightarrow AC\perp BD\)\((EF//AC,EH//BD)\)

b) Hình bình hành \(EFGH\) là hình thoi

\(\Leftrightarrow EF=EH\Leftrightarrow AC=BD\) \(\left(EF=\dfrac{AC}{2};EH=\dfrac{BD}{2}\right)\)

c) Hình bình hành \(EFGH\) là hình vuông \(\Leftrightarrow\left\{{}\begin{matrix}AC\perp BD\\AC=BD\end{matrix}\right.\)

21 tháng 4 2017

undefined

21 tháng 4 2017

Screenshot_48

Ta có : HE, GF lần lượt là đường trung bình của tam giác ADB và tam giác CDB

=> HE // BD, GF // BD và BD = 2HE = 2GF

Tương tự : HG, EF lần lượt là đường trung bình của tam giác DAC và tam giác BAC

=> HG // AC, EF // AC và AC = 2HG = 2EF

Nên EFGH là hình bình hành.

a) Đề hình bình hành EFGH là hình chữ nhật thì EH ⊥ EF => BD ⊥ AC

Điều kiện phải tìm : Hai đường chéo AC, BD vuông góc với nhau.

b) Để hình bình hành EFGH là hình thoi thì EH = EF => BD = AC

Điều kiện phải tìm : Hai đường chéo AC và BD bằng nhau.

c) Để hình bình hành EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật, vừa là hình thoi => BD ⊥ AC và BD = AC.

Điều kiện phải tìm : Hai đường chéo AC, BD vuông góc với nhau và bằng nhau.

19 tháng 12 2022

c

 

6 tháng 11 2021

E, F lần lượt là trung điểm của AB và BC (gt)

\(\Rightarrow\) EF là đường trung bình của tam giác ABC

\(\Rightarrow\) EF // AC và EF = \(\frac{1}{2}\) AC (1)

H, G lần lượt là trung điểm của AD và DC (gt)


\(\Rightarrow\) HG là đường trung bình của tam giác ACD

\(\Rightarrow\) HG // AC và HG = \(\frac{1}{2}\) AC (2)

Từ (1) và (2) \(\Rightarrow\) EF // HG và EF = HG

\(\Rightarrow\) Tứ giác EFGH là hình bình hành

Tứ giác EFGH là hình bình hành. EF // AC, EF = \(\frac{1}{2}\) AC 

Ta còn có EH là đường trung bình của tam giác ABD

\(\Rightarrow\) EH // BD và EH = \(\frac{1}{2}\) BD

- Tứ giác EFGH là hình chữ nhật

\(\Leftrightarrow\) Hình bình hành EFGH có: 

\(\widehat{HEF}=90^o\)

\(\Leftrightarrow HE\perp EF\)

\(\Leftrightarrow EH\perp AC\)

\(\Leftrightarrow AC\perp BD\)

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc với nhau thì tứ giác EFGH là hình chữ nhật

- Tứ giác EFGH là hình thoi

\(\Leftrightarrow\) Hình bình hành EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD bằng nhau thì tứ giác EFGH là hình thoi

- Tứ giác EFGH là hình vuông

\(\Leftrightarrow\) Hình chữ nhật EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc và bằng nhau thì tứ giác EFGH là hình vuông

G C D H A E B F Yen Nhi