K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\overrightarrow{GE}+2\cdot\overrightarrow{GF}\)

\(=\overrightarrow{0}\)

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR: Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR: a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD b) Vecto AB + vecto CD = Vecto AD + vecto CB c)Vecto AB - vecto CD = Vecto AB - vecto BD Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH +...
Đọc tiếp

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:

Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE

Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:

a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD

b) Vecto AB + vecto CD = Vecto AD + vecto CB

c)Vecto AB - vecto CD = Vecto AB - vecto BD

Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0

Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:

a) Vecto CO - vecto OB = Vecto BA

b) Vecto AB - vecto BC = Vecto DB

c) Vecto DA - vecto DB = Vecto OD - vecto OC

d) Vecto DA - vecto DB + vecto DC = Vecto 0

Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:

a) Vecto a= vecto AB + vecto AC

b) Vecto b= vecto AB + vecto AC + vecto AG

c) Vecto c= vecto BA + vecto BC

d) Vecto d= vecto AB - vecto AC + vecto BI

5
4 tháng 8 2019

Xíu nữa làm :v

4 tháng 8 2019

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

24 tháng 5 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.

Suy ra, vecto  M N → không cùng phương với vecto  A P →

Đáp án B

2 tháng 9 2021
xét tam giác ABD có:
M là trung điểm AB
Q là trung điểm AD
suy ra MQ là đường trung bình của tam giác ABD
suy ra MQ // BD, MQ = 1/2.BD (1)
xét tam giác BCD có:
N là trung điểm BC
P là trung điểm DC
suy ra NP là đường trung bình của tam giác BCD
suy ra NP//BD, NP = 1/2.BD (2)
từ (1), (2) suy ra NP//MQ và NP = MQ
suy ra vecto NP = MQ
chứng minh tương tự trên thì ta cũng được vecto NM = PQ
NV
2 tháng 9 2021

Ta có M là trung điểm AB, N là trung điểm BC

\(\Rightarrow\) MN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{AC}\)

Hoàn toàn tương tự, PQ là đường trung bình tam giác ACD

\(\Rightarrow\overrightarrow{QP}=\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{MN}=\overrightarrow{QP}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Điểm I là điểm nào thế bạn?

16 tháng 9 2016

bài 1

a CO-OB=BA

<=.> CO = BA +OB

<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM

b AB-BC=DB

<=> AB=DB+BC

<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM

Cc DA-DB=OD-OC

<=> DA+BD= OD+CO

<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM

d DA-DB+DC=0

VT= DA +BD+DC

= BA+DC

Mà BA=CD(CMT)

=> VT= CD+DC=O

 

16 tháng 9 2016

BÀI 2

AC=AB+BC

BD=BA+AD

=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)