K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

1.

trên tia đối tia CD lấy điểm H sao cho AC=CH.Nối BH

=>  TAM GIÁC ABC=HBC(c.g.c)

=>  AB=BH  =>  AB+BD=HB+BD

AC=CH  =>  AC+CD=HC+CD

Tam giác DBH có BD+BH>DH ( bất đẳng thức tam giác)

=> đpcm

7 tháng 10 2016

2.

góc C = 80 độ

tam giác BMC cóCB=CM nên cân tại C

=>góc BMC=góc CBM=(180 -  80)/2=50

9 tháng 12 2018

A B C D M N O

9 tháng 12 2018

a)  Xét tam giác vuông AMD và tam giác vuông CBN ta có :

\(\widehat{AMD}=\widehat{CNB}=90^o\) ( GT )

\(AD=CB\)( Vì ABCD là hình bình hành )

\(\widehat{ADM}=\widehat{CBN}=60^o\) ( góc đối của hình bình hành ABCD )

Do đó : \(\Delta AMD=\Delta CBN\)( cạnh huyền - góc nhọn )

\(\Rightarrow\hept{\begin{cases}AM=CN\\DM=NB\end{cases}}\)( các cặp cạnh tương ứng )

\(\Rightarrow\hept{\begin{cases}AM=CN\\AN=CM\end{cases}}\)   ( vì AB=CD )

=> ANCM là hình bình hành 

Xét hình bình hành ANCM ta có :

góc AMC=90 độ 

=> AMCN là hình chữ nhật   .  ( dấu hiệu nhận biết 3 )

b) Ta có  O là điểm giao hai đường chéo AC và BD của hình bình hành ABCD .

=> O là trung điểm của AC và BD . (1)

Và ANCM là hình bình hành ( câu a )

=> O là giao điểm của hai đường chéo AC và MN 

=> O cũng là trung điểm của MN   (2)

Từ (1) và (2)

=> AC , BD và MN đồng quy tại điểm O  ( đpcm)

Bài 1) 

Trên AD lấy E sao cho AE = AB 

Xét ∆ACE và ∆ACB ta có : 

AC chung 

DAC = BAC ( AC là phân giác) 

AB = AE (gt)

=> ∆ACE = ∆ACB (c.g.c)

=> CE = CB (1)

=> AEC = ABC = 110°

Mà AEC là góc ngoài trong ∆EDC 

=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)

=> ECD = 110 - 70 

=> EDC = 40°

Xét ∆ EDC : 

DEC + EDC + ECD = 180 °

=> CED = 180 - 70 - 40 

=> CED = 70° 

=> CED = EDC = 70° 

=> ∆EDC cân tại C 

=> CE = CD (2)

Từ (1) và (2) :

=> CB = CD (dpcm)

b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°