Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng bốn góc của 1 tứ giác bằng 360 ° nên: ∠A + ∠ B + ∠ C + ∠ D = 360 °
Suy ra: ∠ A + ∠ B = 360 ° – ( ∠ C + ∠ D) hay
∠ A + ∠ B = 360 ° - 60 ° + 80 ° = 220 °
Mà ∠ A - ∠ B = 10 °
Vậy ∠ A = = 115 ° , ∠ B = 115 ° - 10 ° = 105 °
Tứ giác ABCD có: ( ko bik ghi góc nên ko ghi nha )
A + B + C + D = 3600 ( Tổng 4 góc của tứ giác )
A + B = 3600 - ( C + D )
A + B = 3600 - ( 600 + 800 )
A + B = 2200
A = [ ( A + B ) + ( A - B ) ] : 2 = ( 2200 + 100 ) : 2 = 1150
A - B = 100
→ B = A - 100 = 1150 -100 = 1050.
Bài 1 : Bài giải
Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)
Trong tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)
\(2\widehat{B}+150^o=360^o\)
\(2\widehat{B}=110^o\)
\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)
\(a,=>\angle\left(B\right)+\angle\left(C\right)=100+80=180^o\)
mà 2 góc ở vị trí trong cùng phía \(=>AB//CD\)
=>ABCD là hình thang
b,\(\dfrac{\angle\left(A\right)}{\angle\left(D\right)}=\dfrac{6}{4}=>\angle\left(A\right)=\dfrac{6\angle\left(D\right)}{4}\)
\(=>\angle\left(A\right)+\angle\left(D\right)=180^o\)(góc trong cùng phía)
\(=>\dfrac{6\angle\left(D\right)}{4}+\angle\left(D\right)=180^o=>\angle\left(D\right)=72^o=>\angle\left(A\right)=\dfrac{6.72^0}{4}=108^o\)
Ta có: \(\widehat{A}-\widehat{D}=10\Rightarrow\widehat{A}-80=10\Rightarrow\widehat{A}=90\)
Mặt khác: Tổng 4 góc của 1 tứ giác là 360 độ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360\Rightarrow\widehat{90}+\widehat{B}+60+80=360\Rightarrow\widehat{B}=360-90-60-80\Rightarrow\widehat{B}=130\)
(Mình không biết viết kí hiệu độ nên bạn chịu khó để ý chỗ nào cần thêm kí hiệu độ thì thêm vào nhé)
a) Theo bài ra, ta có:
\(\widehat{A}\):\(\widehat{B}\): \(\widehat{C}\) : \(\widehat{D}\) = 1 : 2 : 3 : 4 => \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\widehat{\frac{D}{4}}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=180^0\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}}{1}=\widehat{\frac{B}{2}}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)
=> \(\frac{\widehat{A}}{1}=36^0\) => \(\widehat{A}=36^0\)
\(\widehat{\frac{B}{2}}=36^0\)=> \(\widehat{B}=72^0\)
\(\widehat{\frac{C}{3}}=36^0\) => \(\widehat{C}=108^0\)
\(\widehat{\frac{D}{4}}=36^0\) => \(\widehat{D}=144^0\)
Vậy ...
b) Xét tứ giác ABCD có góc A + góc B + góc C + góc D = 3600
hay góc A + (góc A + 100) + góc C + (góc C + 100) = 3600
=> 2.(góc A + góc C) = 3400
=> góc A + góc C = 1700 => góc B + góc D = 3600 - 1700 = 1900
Ta có: góc B = góc A + 100 (1)
góc C = góc B + 100 (2)
góc D = góc C + 100 (3)
Từ (1) và (2) cộng vế cho vế :
góc B + góc C = góc A + 100 + góc B + 100
=> góc C = góc A + 200 => góc C - A = 200
Mà góc A + góc C = 1700
=> 2. góc C = 1900 => góc C = 950
=> góc A = 950 - 200 = 750
Từ (2) và (3) cộng vế cho vế :
góc C + góc D = góc B + 100 + góc C + 100
=> góc D = góc B + 200 => góc D - góc B = 200
Mà góc D + góc B = 1900
=> 2. góc D = 2100 => góc D = 1050
=> góc B = 1050 - 200 = 850
c) Xét tứ giác ABCD góc A + góc B + góc C + góc D = 3600
=> góc A + góc B = 3600 - góc C - góc D = 3600 - 600 - 800 = 2200
Mà góc A - góc B = 100
=> 2. góc A = 2300 => góc A = 1150
=> góc B = 115 - 100 = 1050
Vậy ...
1. Áp dụng định lý tổng 3 góc vào tam giác ICD , bạn tính được góc ICD +góc IDC = 75 độ
Mà góc BCD = 2 góc ICD và góc ADC = 2 góc IDC nên góc BCD + góc ADC = 2.75 = 150 độ
Xét tứ giác ABCD có: góc A + góc B + góc BCD + góc ADC = 360 độ
góc A + 90 độ + 150 độ = 360 độ
góc A = 120 độ
2. góc C của tứ giác là: 180 độ -130 độ = 50 độ
Chúc bạn học tốt.
bài 5; tính số đo các góc của tứ giác ABCD biết góc A = 60 độ; góc B = 90 độ. Tính số đo của góc C và góc D:
a, góc C = 100 độ; góc D = 60 độ;
góc A
C, góc B = 80 độ; góc C = 60 độ; 5 góc A = 6 góc D
\(\widehat{A}=110^0\)