Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N F E G H I K
Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.
Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD
Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)
Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)
Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)
Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)
Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g) => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN
Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).
A B C M N P I
Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC
Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.
Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\)
Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)
Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)
Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)
Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB
Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB
Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)
Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)
Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:
\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM
Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.