Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(MN\perp BC;AB\perp BC\) => MN//AB \(\Rightarrow\frac{MN}{AB}=\frac{CM}{CA}\) (Talet trong tam giác)
\(MP\perp AD;CD\perp AD\) => MP//CD \(\Rightarrow\frac{MP}{CD}=\frac{AM}{CA}\) (Talet trong tam giác)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{CM}{CA}+\frac{AM}{CA}=\frac{CA}{CA}=1\left(dpcm\right)\)
Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)
A D B C P M N
Ta thấy : \(\hept{\begin{cases}AD\perp DC\\MP\perp AD\end{cases}}\) \(\Rightarrow PM//DC\)
\(\Rightarrow\frac{MP}{CD}=\frac{AM}{AC}\) ( định lý Talet )
Chứng minh tương tự ta có : \(MN//AB\)
\(\Rightarrow\frac{MN}{AB}=\frac{MC}{AC}\) ( định lý Talet )
Khi đó : \(\frac{MN}{AB}+\frac{MP}{CD}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\) (ĐPCM)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Witch Fairy - Toán lớp 8 | Học trực tuyến
M P N A B D C
Ta có MN vuông góc BC (gt)
AB vuông góc BC (gt)
=> MN // AB
Theo đinh lí Talet ta được \(\frac{MN}{AB}=\frac{CN}{BC}=\frac{CM}{AC}\) (1)
Ta có MP vuông góc AD (gt)
DC vuông góc AD (gt)
=> MP // DC
Theo đinh lí Talet ta được \(\frac{MP}{DC}=\frac{AP}{AD}=\frac{AM}{AC}\) (2)
Từ (1) và (2) => \(\frac{MN}{BC}+\frac{MP}{AD}=\frac{CM}{AC}+\frac{AM}{AC}=\frac{CM+AM}{AC}=\frac{AC}{AC}=1\)(ĐPCM)
Wi ơi. Theo bạn đề bài đúng bay sai? Mik suy nghĩ một tuần rồi mà vẫn k lm giống đề đc , mik chỉ lm đc như Wi lm thoyy